Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

R8C/2E Group, R8C/2F Group Hardware Manual

RENESAS MCU R8C FAMILY / R8C/2x SERIES

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics www.renesas.com

Rev.1.00 2007.12

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
 You should not use the products or the technology described in this document for the purpose of military
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the R8C/2E Group, R8C/2F Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Technology Web site.

Document Type	Description	Document Title	Document No.
Datasheet	Hardware overview and electrical characteristics	R8C/2E, R8C/2F	REJ03B0222
		Group Datasheet	
Hardware manual	Hardware specifications (pin assignments,	R8C/2E Group,	This hardware
	memory maps, peripheral function	R8C/2F Group	manual
	specifications, electrical characteristics, timing	Hardware Manual	
	charts) and operation description		
	Note: Refer to the application notes for details on		
	using peripheral functions.		
Software manual	Description of CPU instruction set	R8C/Tiny Series	REJ09B0001
		Software Manual	
Application note	Information on using peripheral functions and	Available from Rene	esas
	application examples	Technology Web sit	e.
	Sample programs		
	Information on writing programs in assembly		
	language and C		
Renesas	Product specifications, updates on documents,		
technical update	etc.		

2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

(1)	Register Names, Bit Names, and Pin Names Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," "bit," or "pin" to distinguish the three categories. Examples the PM03 bit in the PM0 register P3_5 pin, VCC pin	
(2)	Notation of Numbers The indication "b" is appended to numeric values given in binary format. However, nothing is appended to the values of single bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing is appended to numeric values given in decimal format. Examples Binary: 11b	

Hexadecimal: EFA0h Decimal: 1234

3. Register Notation

The symbols and terms used in register diagrams are described below.

	F	Symbol XXX	Address After Reset XXX 00h	
	Bit Symbol	Bit Name	Function	RW
	XXX0	XXX bits	b1 b0 1 0: XXX 0 1: XXX	RW
	XXX1		1 0: Do not set. 1 1: XXX	RW
	(b2)	Nothing is assigned. When read, the cont	If necessary, set to 0. ent is undefined.	_
	(b3)	Reserved bits	Set to 0.	RW
	XXX4	XXX bits	Function varies according to the operating mode.	RW
 	XXX5			wo
	XXX6			RW
	XXX7	XXX bit	0: XXX 1: XXX	RO

*1

Blank: Set to 0 or 1 according to the application.0: Set to 0.1: Set to 1.

X: Nothing is assigned.

*2

RW: Read and write. RO: Read only. WO: Write only. -: Nothing is assigned.

*3

• Reserved bit

Reserved bit. Set to specified value.

*4

• Nothing is assigned

Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0.

• Do not set to a value

Operation is not guaranteed when a value is set.

• Function varies according to the operating mode.

The function of the bit varies with the peripheral function mode. Refer to the register diagram for information on the individual modes.

4. List of Abbreviations and Acronyms

Abbreviation	Full Form	
ACIA	Asynchronous Communication Interface Adapter	
bps	bits per second	
CRC	Cyclic Redundancy Check	
DMA	Direct Memory Access	
DMAC	Direct Memory Access Controller	
GSM	Global System for Mobile Communications	
Hi-Z	High Impedance	
IEBus	Inter Equipment Bus	
I/O	Input / Output	
IrDA	Infrared Data Association	
LSB	Least Significant Bit	
MSB	Most Significant Bit	
NC	Non-Connect	
PLL	Phase Locked Loop	
PWM	Pulse Width Modulation	
SFR	Special Function Registers	
SIM	Subscriber Identity Module	
UART	Universal Asynchronous Receiver / Transmitter	
VCO	Voltage Controlled Oscillator	

All trademarks and registered trademarks are the property of their respective owners.

Table of Contents

SFR Page Reference		B - 1
1. C	Dverview	1
1.1	Features	
1.1		
1.1.		
1.1.2	Product List	
1.2	Block Diagram	
1.4	Pin Assignment	
1.5	Pin Functions	
1.0		
2. C	Central Processing Unit (CPU)	12
2.1	Data Registers (R0, R1, R2, and R3)	
2.2	Address Registers (A0 and A1)	
2.3	Frame Base Register (FB)	
2.4	Interrupt Table Register (INTB)	
2.5	Program Counter (PC)	
2.6	User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)	
2.7	Static Base Register (SB)	
2.8	Flag Register (FLG)	
2.8.		
2.8.2		
2.8.3		
2.8.4		
2.8.		
2.8.0		
2.8.		
2.8.8		
2.8.9		
2.8.	10 Reserved Bit	
3. N	lemory	15
3.1	R8C/2E Group	
3.2	R8C/2F Group	
4. S	pecial Function Registers (SFRs)	17
5. R	lesets	24
5.1	Hardware Reset	
5.1.		
5.1.2		
5.2	Power-On Reset Function	
5.3	Voltage Monitor 1 Reset	
5.4	Voltage Monitor 2 Reset	
5.5	Watchdog Timer Reset	
5.6	Software Reset	
5.0		
6. V	Oltage Detection Circuit	31
6.1	VCC Input Voltage	

6.1	1.1 Monitoring Vdet1	. 36
6.1	1.2 Monitoring Vdet2	. 36
6.2	Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset	. 37
6.3	Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset	. 39
7.	Programmable I/O Ports	41
7.1	Functions of Programmable I/O Ports	. 41
7.2	Effect on Peripheral Functions	. 42
7.3	Pins Other than Programmable I/O Ports	. 42
7.4	Port Setting	. 52
7.5	Unassigned Pin Handling	. 62
8.	Processor Mode	63
8.1	Processor Modes	. 63
9.	Bus	64
10.	Clock Generation Circuit	
10.1	XIN Clock	. 73
10.2	On-Chip Oscillator Clocks	. 74
10	.2.1 Low-Speed On-Chip Oscillator Clock	. 74
10	.2.2 High-Speed On-Chip Oscillator Clock	. 74
10.3	CPU Clock and Peripheral Function Clock	. 75
10	.3.1 System Clock	. 75
10	.3.2 CPU Clock	. 75
10	.3.3 Peripheral Function Clock (f1, f2, f4, f8, and f32)	. 75
10	.3.4 fOCO	. 75
10	.3.5 fOCO40M	. 75
10	.3.6 fOCO-F	. 75
10	.3.7 fOCO-S	. 75
10	.3.8 fOCO128	. 75
10.4	Power Control	. 76
10	.4.1 Standard Operating Mode	. 76
10	.4.2 Wait Mode	. 78
10	.4.3 Stop Mode	. 82
10.5	Oscillation Stop Detection Function	. 85
10	.5.1 How to Use Oscillation Stop Detection Function	. 85
10.6	Notes on Clock Generation Circuit	. 88
10	.6.1 Stop Mode	. 88
10	.6.2 Wait Mode	. 88
10	.6.3 Oscillation Stop Detection Function	. 88
10	.6.4 Oscillation Circuit Constants	. 88
11.	Protection	89
12.	Interrupts	90
12.1	Interrupt Overview	. 90
12	.1.1 Types of Interrupts	. 90
12	.1.2 Software Interrupts	. 91

12.1.3	Special Interrupts	
12.1.4	Peripheral Function Interrupt	
12.1.5	Interrupts and Interrupt Vectors	
12.1.6	Interrupt Control	
12.2	INT Interrupt	104
12.2.1	$\overline{\text{INTi}}$ Interrupt (i = 0, 1, 3)	104
12.2.2	$\overline{\text{INTi}}$ Input Filter (i = 0, 1, 3)	106
12.3	Key Input Interrupt	107
12.4	Address Match Interrupt	109
12.5	Timer RC Interrupt, Comparator 0 Interrupt, and Comparator 1 Interrupt	111
12.6	Notes on Interrupts	112
12.6.1	Reading Address 00000h	112
12.6.2	SP Setting	112
12.6.3	External Interrupt and Key Input Interrupt	112
12.6.4	Changing Interrupt Sources	113
12.6.5	Changing Interrupt Control Register Contents	114
13. Wa	chdog Timer	115
13.1	Count Source Protection Mode Disabled	118
13.2	Count Source Protection Mode Enabled	119
14. Tim	ers	120
14.1	Timer RA	
14.1.1	Timer Mode	
14.1.2	Pulse Output Mode	
14.1.3	Event Counter Mode	
14.1.4	Pulse Width Measurement Mode	
14.1.5	Pulse Period Measurement Mode	
14.1.6	Notes on Timer RA	
14.2	Timer RB	
14.2.1	Timer Mode	
14.2.2	Programmable Waveform Generation Mode	
14.2.3	Programmable One-shot Generation Mode	
14.2.4	Programmable Wait One-Shot Generation Mode	
14.2.5	Notes on Timer RB	
14.3	Timer RC	
14.3.1	Overview	
14.3.2	Registers Associated with Timer RC	
14.3.3	Common Items for Multiple Modes	
14.3.4	Timer Mode (Input Capture Function)	
14.3.5	Timer Mode (Output Compare Function)	
14.3.6	PWM Mode	
14.3.7	PWM2 Mode	
14.3.8	Timer RC Interrupt	
14.3.9	Notes on Timer RC	
14.4	Timer RE	
14.4.1	Output Compare Mode	
14.4.2	Notes on Timer RE	
		_00

15.	Sei	ial Interface	207
15.	1	Clock Synchronous Serial I/O Mode	213
1	5.1.1	Polarity Select Function	216
1	5.1.2	LSB First/MSB First Select Function	216
1	5.1.3	Continuous Receive Mode	217
15.2	2	Clock Asynchronous Serial I/O (UART) Mode	218
1.	5.2.1	Bit Rate	222
15.3	3	Notes on Serial Interface	223
16.	Ha	rdware LIN	224
16.	1	Features	224
16.2	2	Input/Output Pins	225
16.	3	Register Configuration	226
16.4	4	Functional Description	228
1	6.4.1	Master Mode	228
1	6.4.2	Slave Mode	231
1	6.4.3	Bus Collision Detection Function	235
1	6.4.4	Hardware LIN End Processing	236
16.	5	Interrupt Requests	
16.0	6	Notes on Hardware LIN	
17.	A/C	Converter	239
17.	1	One-Shot Mode	243
17.2	-	Repeat Mode	
17.3		Sample and Hold	
17.4		A/D Conversion Cycles	
17.		Internal Equivalent Circuit of Analog Input	
17.		Output Impedance of Sensor under A/D Conversion	
17.		Notes on A/D Converter	
18.	D/A	A Converter	253
10			256
19.			256
19.		Overview	
19.2		Register Functions	
19.3		Functional Description	
	9.3.1	Comparison Result Output	
	9.3.2		
19.4	4	Comparator 0 Interrupt and Comparator 1 Interrupt	263
20.		sh Memory Version	
20.		Overview	
20.2		Memory Map	
20.3	3	Functions to Prevent Rewriting of Flash Memory	
2	0.3.1	ID Code Check Function	
2	0.3.2	ROM Code Protect Function	268
20.4	4	CPU Rewrite Mode	269
2	0.4.1	EW0 Mode	270
2	0.4.2	EW1 Mode	270

20.4.3	Software Commands	279
20.4.4	Status Registers	
20.4.5	Full Status Check	285
20.5	Standard Serial I/O Mode	
20.5.1	ID Code Check Function	287
20.6	Parallel I/O Mode	290
20.6.1	ROM Code Protect Function	290
20.7	Notes on Flash Memory Version	291
20.7.1	CPU Rewrite Mode	291
21. Ele	ectrical Characteristics	294
22. Us	age Notes	309
22.1	Notes on Clock Generation Circuit	309
22.1.1	Stop Mode	309
22.1.2	Wait Mode	309
22.1.3	Oscillation Stop Detection Function	309
22.1.4	Oscillation Circuit Constants	309
22.2	Notes on Interrupts	310
22.2.1	Reading Address 00000h	310
22.2.2	SP Setting	310
22.2.3	External Interrupt and Key Input Interrupt	310
22.2.4	Changing Interrupt Sources	311
22.2.5		
22.3	Notes on Timers	
22.3.1		
22.3.2		
22.3.3		
22.3.4		
22.4	Notes on Serial Interface	
22.5	Notes on Hardware LIN	
22.6	Notes on A/D Converter	
22.0 22.7	Notes on Flash Memory Version	
22.7	•	
22.7.1		
	Notes on Noise	
22.8.1	Latch-up	326
22.8.2	Countermeasures against Noise Error of Port Control Registers	
23. No	tes for On-Chip Debugger	327
Appendix	1. Package Dimensions	328
Appendix	2. Connection Examples between Serial Writer and On-Chip Debugging Emulator	329
Appendix	3. Example of Oscillation Evaluation Circuit	330
Index		331

SFR Page Reference

Address	Register	Symbol	Page
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	63
0005h	Processor Mode Register 1	PM1	63
0006h	System Clock Control Register 0	CM0	67
0007h	System Clock Control Register 1	CM1	68
0008h			
0009h			
000Ah	Protect Register	PRCR	89
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	69
000Dh	Watchdog Timer Reset Register	WDTR	116
000Eh	Watchdog Timer Start Register	WDTS	116
000Fh	Watchdog Timer Control Register	WDC	116
0010h	Address Match Interrupt Register 0	RMAD0	110
0011h			
0012h			
0013h	Address Match Interrupt Enable Register	AIER	110
0014h	Address Match Interrupt Register 1	RMAD1	110
0015h			
0016h			
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	117
001Dh		00111	117
001Eh			
001Eh			
0020h			
002011		+ +	
0021h		+ +	
002211 0023h	High-Speed On-Chip Oscillator Control	FRA0	70
002311	Register 0	T IXAU	70
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	70
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	70
0026h			
0027h			
0028h			
0029h			
002Ah			
002Bh			
002Ch	High-Speed On-Chip Oscillator Control Register 7	FRA7	71

0030h			
0031h	Voltage Detection Register 1	VCA1	33
0032h	Voltage Detection Register 2	VCA2	33, 71
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register	VW1C	34
0037h	Voltage Monitor 2 Circuit Control Register	VW2C	35
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			

Address	Register	Symbol	Page
0040h			
0041h			
0042h			
0043h			
0044h			
0045h 0046h			
0046h	Timer RC Interrupt Control Register	TRCIC	96
0047h	Timer to merupi control tregister	incolo	30
0049h			
004Ah	Timer RE Interrupt Control Register	TREIC	95
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	95
004Eh	A/D Conversion Interrupt Control Register	ADIC	95
004Fh			
0050h 0051h	LIARTO Tropomit Interrupt Control Register	SOTIC	05
0051h	UART0 Transmit Interrupt Control Register UART0 Receive Interrupt Control Register	SORIC	95 95
0052h	er atter register menupt control register	001110	
0054h			
0055h			
0056h	Timer RA Interrupt Control Register	TRAIC	95
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	95
0059h	INT1 Interrupt Control Register	INT1IC	97
005Ah	INT3 Interrupt Control Register	INT3IC	97
005Bh 005Ch	Comparator 0 Interrupt Control Register	CM0IC CM1IC	96
005Ch	Comparator 1 Interrupt Control Register INT0 Interrupt Control Register	INTOIC	96 97
005Eh	intro interrupt control register		51
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h 0067h			
0067h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h 0072h			
0072h			
0073h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch 007Dh			
007Dh			
007Eh			
L		1	ii

Address	Register	Symbol	Page
0080h		-,	
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h			
0089h			
008Ah			
008Bh			
008Ch			
008Dh			
008Eh			
008Fh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Eh 009Fh			
009Eh 009Fh 00A0h	UART0 Transmit/Receive Mode Register	UOMR	210
009Eh 009Fh 00A0h 00A1h	UART0 Bit Rate Register	U0BRG	210
009Eh 009Fh 00A0h 00A1h 00A2h	-		
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h	UART0 Bit Rate Register UART0 Transmit Buffer Register	U0BRG U0TB	210 209
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0	U0BRG U0TB U0C0	210 209 211
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A5h 00A6h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0	U0BRG U0TB U0C0	210 209 211
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A6h 00A7h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A6h 00A7h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A8h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A9h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A2h 00A3h 00A5h 00A6h 00A7h 00A8h 00A8h 00AAh 00AAh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A5h 00A6h 00A7h 00A8h 00A8h 00AAh 00AAh 00AAh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A2h 00A2h 00A3h 00A3h 00A3h 00A3h 00A3h 00AAh 00AAh 00AAh 00AAh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A2h 00A3h 00A3h 00A6h 00A6h 00A6h 00A9h 00AAh 00AAh 00AAh 00ACh 00ACh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A2h 00A3h 00A4h 00A5h 00A6h 00A6h 00A6h 00A8h 00AAh 00AAh 00AAh 00AAh 00AAh 00ACh 00ACh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A4h 00A5h 00A6h 00A6h 00AAh 00AAh 00AAh 00AAh 00AAh 00AAh 00AAh 00AAh 00AAh 00AAh 00AAh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A4h 00A4h 00A6h 00A7h 00A8h 00A9h 00AAh 00AAh 00AAh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00AAh 00A2h 00A2h 00A2h 00A2h 00A2h 00A2h 00A2h 00A2h 00A2h 00A3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A2h 00A3h 00A4h 00A5h 00A7h 00A8h 00A7h 00A8h 00AAh 00AAh 00AAh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00AAh 00AAh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A8h 00AAh 00AAB 00AAh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACH 00CCH	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A3h 00A6h 00A6h 00A6h 00A6h 00A6h 00A6h 00AAh 00A8h 00AA 00AAh 00AA 00AAh 00AAAA 00AAAA 00AAAA 00AAAA 00AAAA 00AAAA 00AAAA 00AAAA 00AAAA 00AAAA 00AAAA 00AAAA 00AAAAAA	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00B6h 00B6h 00B6h 00B9h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A4h 00A4h 00A6h 00A7h 00A8h 00A9h 00AAh 00AAh 00AAh 00AAh 00AAh 00AAh 00ACh 00ACh 00ACh 00ABh 00B3h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A2h 00A2h 00A2h 00A2h 00B3h 00B3h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00B3h 00B3h 00B3h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A3h 00A6h 00A7h 00A8h 00A8h 00A9h 00AAh 00A8h 00ACH 00ACH	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212
009Eh 009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A3h 00A2h 00A2h 00A2h 00A2h 00A2h 00A2h 00B2h 00B3h 00B3h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit / Receive Control Register 0 UART0 Transmit / Receive Control Register 1	U0BRG U0TB U0C0 U0C1	210 209 211 212

Address	Register	Symbol	Page
00C0h	A/D Register	AD	242
00C0h	AD Register	AD	242
00C1h			
00C2h			
00C3h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h		1.50.5	
00D4h	A/D Control Register 2	ADCON2	242
00D5h			
00D6h	A/D Control Register 0	ADCON0	241
00D7h	A/D Control Register 1	ADCON1	242
00D8h	D/A Register 0	DA0	254
00D9h			
00DAh	D/A Register 1	DA1	254
00DBh			
00DCh	D/A Control Register	DACON	254
00DDh			
00DEh			
00DFh			
00E0h	Port P0 Register	P0	49
00E1h	Port P1 Register	P1	49
00E2h	Port P0 Direction Register	PD0	48
00E3h	Port P1 Direction Register	PD1	48
00E4h			
00E5h	Port P3 Register	P3	49
00E6h			
00E7h	Port P3 Direction Register	PD3	48
00E8h	Port P4 Register	P4	49
00E9h	Port P5 Register	P5	49
00EAh	Port P4 Direction Register	PD4	48
	3	104	
00EBh	Port P5 Direction Register	PD5	48
00EBh 00ECh			
00ECh			
00ECh 00EDh			
00ECh 00EDh 00EEh			
00ECh 00EDh 00EEh 00EFh			
00ECh 00EDh 00EEh 00EFh 00F0h			
00ECh 00EDh 00EEh 00EFh 00F0h 00F1h			
00ECh 00EDh 00EEh 00EFh 00F0h 00F1h 00F2h			
00ECh 00EDh 00EEh 00EFh 00F0h 00F1h 00F2h 00F3h			
00ECh 00EDh 00EEh 00FCh 00F0h 00F1h 00F2h 00F3h 00F4h	Port P5 Direction Register		
00ECh 00EDh 00EEh 00F0h 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h	Port P5 Direction Register	PD5	48
00ECh 00EDh 00EFh 00F0h 00F1h 00F2h 00F3h 00F3h 00F4h 00F5h 00F6h 00F7h	Port P5 Direction Register	PD5	48 50 50
00ECh 00EDh 00EEh 00FFh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h	Port P5 Direction Register	PD5	48 50 50 50, 212
00ECh 00EDh 00EEh 00FFh 00F0h 00F1h 00F2h 00F3h 00F4h 00F5h 00F6h 00F7h 00F8h 00F9h	Port P5 Direction Register Pin Select Register 2 Pin Select Register 3 Port Mode Register External Input Enable Register	PD5	48 50 50 50,212 104
00ECh 00EDh 00EFh 00F7h 00F7h 00F2h 00F3h 00F3h 00F6h 00F7h 00F8h 00F9h	Port P5 Direction Register Port P5 Direction Register Pin Select Register 2 Pin Select Register 2 Port Mode Register External Input Enable Register INT Input Filter Select Register	PD5	48 50 50 50,212 104 105
00ECh 00EDh 00EFh 00F7h 00F7h 00F7h 00F3h 00F4h 00F5h 00F7h 00F8h 00F8h 00F8h	Port P5 Direction Register Port P5 Direction Register Pin Select Register 2 Pin Select Register 3 Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register Key Input Enable Register	PD5	48 50 50 50, 212 104 105 108
00ECh 00EDh 00EEh 00FFh 00FOh 00F1h 00F2h 00F3h 00F3h 00F6h 00F6h 00F7h 00F8h 00FAh 00FBh	Port P5 Direction Register Port P5 Direction Register Pin Select Register 2 Pin Select Register 3 Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register Pull-Up Control Register 0	PD5 PD5 PINSR2 PINSR2 PINSR3 PMR INTEN INTF KIEN PUR0	48 50 50 50,212 104 105 108 51
00ECh 00EDh 00EFh 00F7h 00F7h 00F7h 00F3h 00F4h 00F5h 00F7h 00F8h 00F8h 00F8h	Port P5 Direction Register Port P5 Direction Register Pin Select Register 2 Pin Select Register 3 Port Mode Register External Input Enable Register INT Input Filter Select Register Key Input Enable Register Key Input Enable Register	PD5	48 50 50 50, 212 104 105 108

Address	Register	Symbol	Page
0100h	Timer RA Control Register	TRACR	123
0101h	Timer RA I/O Control Register	TRAIOC	123, 125, 128, 130, 132, 135
0102h	Timer RA Mode Register	TRAMR	124
0103h	Timer RA Prescaler Register	TRAPRE	124
0104h	Timer RA Register	TRA	124
0105h			
0106h	LIN Control Register	LINCR	226
0107h	LIN Status Register	LINST	227
0108h	Timer RB Control Register	TRBCR	139
0109h	Timer RB One-Shot Control Register	TRBOCR	139
010Ah	Timer RB I/O Control Register	TRBIOC	140, 142, 146, 149, 153
010Bh	Timer RB Mode Register	TRBMR	140
010Ch	Timer RB Prescaler Register	TRBPRE	141
010Dh	Timer RB Secondary Register	TRBSC	141
010Eh	Timer RB Primary Register	TRBPR	141
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			
0118h	Timer RE Counter Data Register	TRESEC	203
0119h	Timer RE Compare Data Register	TREMIN	203
011Ah			
011Bh			
011Ch	Timer RE Control Register 1	TRECR1	203
011Dh	Timer RE Control Register 2	TRECR2	204
011Eh	Timer RE Clock Source Select Register	TRECSR	204
011Fh			
0120h	Timer RC Mode Register	TRCMR	162
0121h	Timer RC Control Register 1	TRCCR1	163, 186, 190, 195
0122h	Timer RC Interrupt Enable Register	TRCIER	164
0123h	Timer RC Status Register	TRCSR	165
0124h	Timer RC I/O Control Register 0	TRCIOR0	170, 179, 184
0125h	Timer RC I/O Control Register 1	TRCIOR1	170, 180, 185
0126h	Timer RC Counter	TRC	166
0127h		1	
0128h	Timer RC General Register A	TRCGRA	166
0129h]		
012Ah	Timer RC General Register B	TRCGRB	166
012Bh]		
012Ch	Timer RC General Register C	TRCGRC	166
012Dh			
012Eh	Timer RC General Register D	TRCGRD	166
012Fh			

Address	Register	Symbol	Page
0130h	Timer RC Control Register 2	TRCCR2	167
0130h	Timer RC Digital Filter Function Select	TRCDF	168
010111	Register	IIIODI	100
0132h	Timer RC Output Master Enable Register	TRCOER	169
0133h			
0134h			
0135h			
0136h			
0137h			
0138h			
0139h			
013Ah			
013Bh			
013Ch			
013Dh			
013Eh			
013Fh			
0140h			
0141h			
0142h			
0143h			
0144h			
0145h			ļ
0146h			ļ
0147h			ļ
0148h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			-
0153h 0154h			
0154h			
0156h			
0150h			
0158h			
0159h			-
0159h			
015Bh			+
015Ch			+
015Dh			
015Eh			<u>†</u>
015Fh			<u>†</u>
0160h		1	†
0161h			1
0162h		İ	t
0163h		İ	t
0164h			1
0165h		1	1
0166h		1	<u> </u>
0167h			<u> </u>
0168h			<u> </u>
0169h			1
016Ah			<u> </u>
016Bh			<u> </u>
016Ch			<u> </u>
016Dh			<u> </u>
016Eh			<u> </u>
016Fh			<u> </u>
		•	·

Address	Register	Symbol	Page
0170h	5	-	Ŭ
0171h			
0172h			
0173h			
0174h	Comparator 0 Control Register	ACCR0	255, 258
0175h	Comparator 1 Control Register	ACCR1	255, 258
0176h			
0177h	Comparator Mode Register	ACMR	259
0178h			
0179h 017Ah			
017An 017Bh			
017Dh			
017Dh			
017Eh			
017Fh			
0180h			
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h 018Ah			
018An			
018Dh			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah 019Bh			
019Bh			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh 01ABh			
01ABh 01ACh			
01ADh			
01ADh 01AEh			
01AEh			
	l	1	I

Address	Register	Symbol	Page
01B0h			
01B1h			
01B2h			
01B3h	Flash Memory Control Register 4	FMR4	275
01B4h			
01B5h	Flash Memory Control Register 1	FMR1	274
01B6h			
01B7h	Flash Memory Control Register 0	FMR0	273
01B8h			
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BEh			
FFFFh	Option Function Select Register	OFS	26, 117, 268

RENESAS

R8C/2E Group, R8C/2F Group RENESAS MCU

1. Overview

1.1 Features

The R8C/2E Group and R8C/2F Group of single-chip MCUs incorporates the R8C/Tiny Series CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs also use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

Furthermore, the R8C/2F Group has on-chip data flash (1 KB \times 2 blocks).

The difference between the R8C/2E Group and R8C/2F Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

1.1.2 Specifications

Tables 1.1 and 1.2 outlines the Specifications for R8C/2E Group and Tables 1.3 and 1.4 outlines the Specifications for R8C/2F Group.

Item	Function	Specification
CPU	Central	R8C/Tiny series core
	processing unit	 Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits
		Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM	Refer to Table 1.5 Product List for R8C/2E Group.
Power Supply	Voltage	Power-on reset
Voltage	detection circuit	Voltage detection 2
Detection		
I/O Ports	Programmable	Input-only: 3 pins
1/01/01/3	I/O ports	CMOS I/O ports: 25, selectable pull-up resistor
		High current drive ports: 8
Clock	Clock generation	2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
CIUCK	circuits	On-chip oscillator (high-speed, low-speed)
	circuits	(high-speed on-chip oscillator has a frequency adjustment
		function)
		,
		Oscillation stop detection: XIN clock oscillation stop detection
		function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		• Low power consumption modes:
		Standard operating mode (high-speed clock, high-speed on-chip
		oscillator, low-speed on-chip oscillator), wait mode, stop mode
Interrupts		• External: 4 sources, Internal: 13 sources, Software: 4 sources
		Priority levels: 7 levels
Watchdog Tim		15 bits × 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits \times 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted
		every period), event counter mode, pulse width measurement mode,
		pulse period measurement mode
	Timer RB	8 bits × 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation
		mode (PWM output), programmable one-shot generation mode,
	T D O	programmable wait one-shot generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM
	TimerDE	mode (output 3 pins), PWM2 mode (PWM output pin)
	Timer RE	8 bits × 1 Output compare mode
Sorial		Output compare mode Clock synchronous serial I/O/UART × 1
Serial	UART0	GOOK SYNCHIONOUS SENALI/O/OAKTXT
Interface		
LIN Module		Hardware LIN: 1 (timer RA, UARTO)
A/D Converter		10-bit resolution x 12 channels, includes sample and hold function
D/A Converter		8-bit resolution × 2 circuits
Comparator		2 circuits

 Table 1.1
 Specifications for R8C/2E Group (1)

RENESAS

Item	Specification
Flash Memory	 Programming and erasure voltage: VCC = 2.7 to 5.5 V
	 Programming and erasure endurance: 100 times
	 Program security: ROM code protect, ID code check
	 Debug functions: On-chip debug, on-board flash rewrite function
Operating Frequency/Supply	f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V),
Voltage	f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V)
Current consumption	Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz)
	Tvp. 23 μ A (VCC = 3.0 V. wait mode (peripheral clock off))
	Typ. 0.7 μA (VCC = 3.0 V, stop mode)
Operating Ambient Temperature	-20 to 85°C (N version)
	-40 to 85°C (D version) ⁽¹⁾
Package	32-pin LQFP
	Package code: PLQP0032GB-A (previous code: 32P6U-A)

 Table 1.2
 Specifications for R8C/2E Group (2)

NOTE:

1. Specify the D version if D version functions are to be used.

Item	Function	Specification
CPU	Central	R8C/Tiny series core
0.0	processing unit	Number of fundamental instructions: 89
	processing unit	Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
		100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits \rightarrow 32 bits
		Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM	Refer to Table 1.6 Product List for R8C/2F Group.
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 2
Detection		
I/O Ports	Programmable	Input-only: 3 pins
	I/O ports	 CMOS I/O ports: 25, selectable pull-up resistor
		High current drive ports: 8
Clock	Clock generation	2 circuits: XIN clock oscillation circuit (with on-chip feedback resistor),
	circuits	On-chip oscillator (high-speed, low-speed)
		(high-speed on-chip oscillator has a frequency adjustment
		function)
		Oscillation stop detection: XIN clock oscillation stop detection
		function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		Low power consumption modes:
		Standard operating mode (high-speed clock, high-speed on-chip
Interrupto		oscillator, low-speed on-chip oscillator), wait mode, stop mode
Interrupts		• External: 4 sources, Internal: 13 sources, Software: 4 sources
Match de a T im		Priority levels: 7 levels
Watchdog Tim		15 bits × 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler) Timer mode (period timer), pulse output mode (output level inverted
		every period), event counter mode, pulse width measurement mode,
	Time en DD	pulse period measurement mode
	Timer RB	8 bits × 1 (with 8-bit prescaler) Timer mode (period timer), programmable waveform generation
		mode (PWM output), programmable one-shot generation mode,
		programmable wait one-shot generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers) Timer mode (input capture function, output compare function), PWM
	Timer DF	mode (output 3 pins), PWM2 mode (PWM output pin)
	Timer RE	8 bits × 1 Output compare mode
Serial	UART0	Clock synchronous serial I/O/UART × 1
	UARIU	GIOCK SYNCHIONOUS SENALI/O/OART X T
Interface		
LIN Module		Hardware LIN: 1 (timer RA, UART0)
A/D Converter		10-bit resolution × 12 channels, includes sample and hold function
D/A Converter		8-bit resolution × 2 circuits
Comparator		2 circuits

RENESAS

Table 1.3 Specifications for R8C/2F Group (1)

Item	Specification		
Flash Memory	 Programming and erasure voltage: VCC = 2.7 to 5.5 V 		
	 Programming and erasure endurance: 10,000 times (data flash) 		
	1,000 times (program ROM)		
	 Program security: ROM code protect, ID code check 		
	 Debug functions: On-chip debug, on-board flash rewrite function 		
Operating Frequency/Supply	f(XIN) = 20 MHz (VCC = 3.0 to 5.5 V),		
Voltage	f(XIN) = 10 MHz (VCC = 2.7 to 5.5 V)		
Current consumption	Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz)		
	Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz)		
	Typ. 23 μ A (VCC = 3.0 V, wait mode (peripheral clock off)) Typ. 0.7 μ A (VCC = 3.0 V, stop mode)		
Operating Ambient Temperature	-20 to 85°C (N version)		
	-40 to 85°C (D version) ⁽¹⁾		
Package	32-pin LQFP		
	Package code: PLQP0032GB-A (previous code: 32P6U-A)		

Table 1.4	Specifications for R8C/2F Group (2)
-----------	-------------------------------------

NOTE:

1. Specify the D version if D version functions are to be used.

Current of Dec. 2007

1.2 Product List

Table 1.5 lists Product List for R8C/2E Group, Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/2E Group, Table 1.6 lists Product List for R8C/2F Group, and Figure 1.2 shows a Part Number, Memory Size, and Package of R8C/2F Group.

Part No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F212E2NFP	8 Kbytes	512 bytes	PLQP0032GB-A	N version
R5F212E4NFP	16 Kbytes	1 Kbyte	PLQP0032GB-A	
R5F212E2DFP	8 Kbytes	512 bytes	PLQP0032GB-A	D version
R5F212E4DFP	16 Kbytes	1 Kbyte	PLQP0032GB-A	
R5F212E2NXXXFP	8 Kbytes	512 bytes	PLQP0032GB-A	N version
R5F212E4NXXXFP	16 Kbytes	1 Kbyte	PLQP0032GB-A	Factory programming product ⁽¹⁾
R5F212E2DXXXFP	8 Kbytes	512 bytes	PLQP0032GB-A	D version
R5F212E4DXXXFP	16 Kbytes	1 Kbyte	PLQP0032GB-A	Factory programming product ⁽¹⁾

Table 1.5 Product List for R8C/2E Group

NOTE:

1. The user ROM is programmed before shipment.

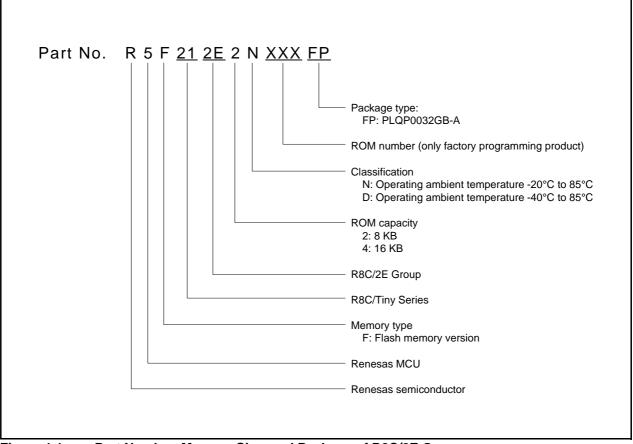


Figure 1.1 Part Number, Memory Size, and Package of R8C/2E Group

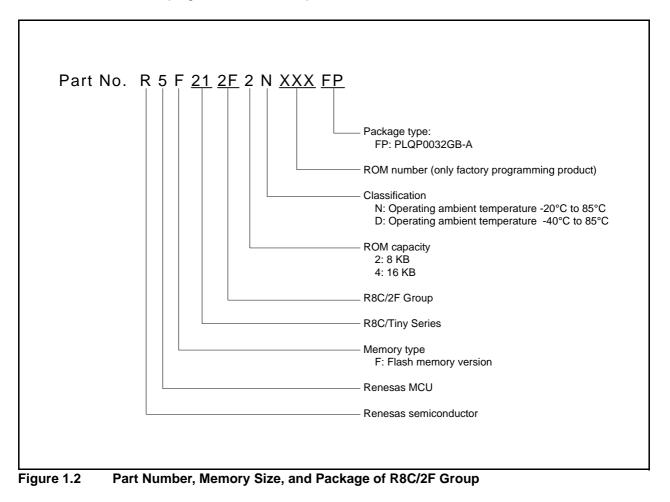
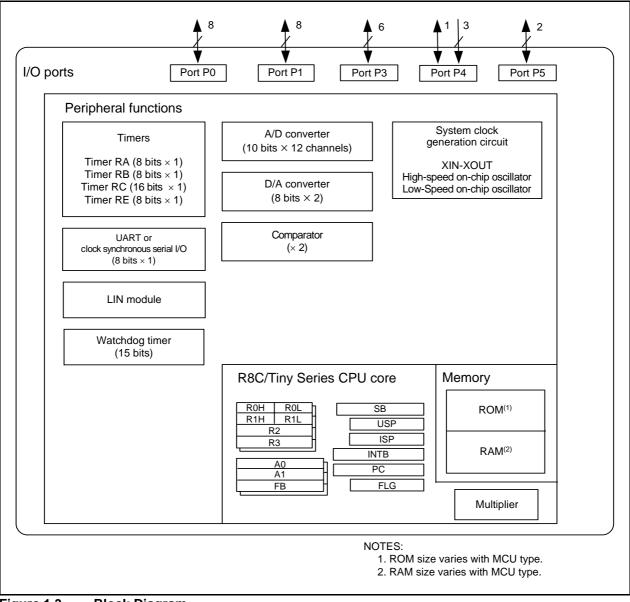
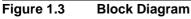

Part No.	ROM Capacity		RAM	Package Type	Remarks	
Fait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remains	
R5F212F2NFP	8 Kbytes	1 Kbyte x 2	512 bytes	PLQP0032GB-A	N version	
R5F212F4NFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A		
R5F212F2DFP	8 Kbytes	1 Kbyte x 2	512 bytes	PLQP0032GB-A	D version	
R5F212F4DFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A		
R5F212F2NXXXFP	8 Kbytes	1 Kbyte x 2	512 bytes	PLQP0032GB-A	N version	
R5F212F4NXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	Factory programming	
					product ⁽¹⁾	
R5F212F2DXXXFP	8 Kbytes	1 Kbyte x 2	512 bytes	PLQP0032GB-A	D version	
R5F212F4DXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0032GB-A	Factory programming	
					product ⁽¹⁾	

Table 1.6 Product List for R8C/2F Group

Current of Dec. 2007


NOTE:


1. The user ROM is programmed before shipment.

1.3 Block Diagram

Figure 1.3 shows a Block Diagram.

1.4 Pin Assignment

Figure 1.4 shows Pin Assignments (Top View). Table 1.7 outlines the Pin Name Information by Pin Number.

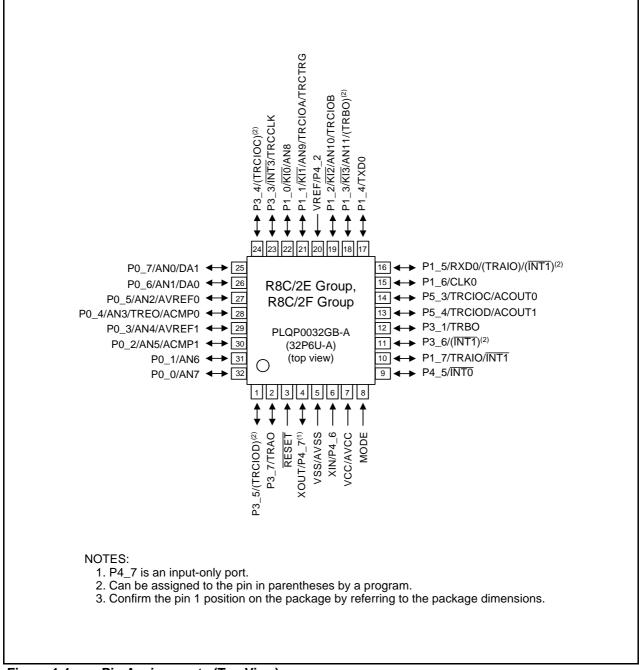


Figure 1.4 Pin Assignments (Top View)

Pin			I/O Pin Functions for of Peripheral Modules					
Number	Control Pin	Port	Interrupt	Timer	Serial Interface	A/D Converter	D/A Converter	Comparator
1		P3_5		(TRCIOD) ⁽¹⁾				
2		P3_7		TRAO				
3	RESET							
4	XOUT	P4_7						
5	VSS/AVSS							
6	XIN	P4_6						
7	VCC/AVCC							
8	MODE							
9		P4_5	INT0					
10		P1_7	INT1	TRAIO				
11		P3_6	(INT1) ⁽¹⁾					
12		P3_1		TRBO				
13		P5_4		TRCIOD				ACOUT1
14		P5_3		TRCIOC				ACOUT0
15		P1_6			CLK0			
16		P1_5	(INT1) ⁽¹⁾	(TRAIO) ⁽¹⁾	RXD0			
17		P1_4			TXD0			
18		P1_3	KI3	(TRBO) ⁽¹⁾		AN11		
19		P1_2	KI2	TRCIOB		AN10		
20	VREF	P4_2						
21		P1_1	KI1	TRCIOA/ TRCTRG		AN9		
22		P1_0	KI0			AN8		
23		P3_3	INT3	TRCCLK				
24		P3_4		(TRCIOC) ⁽¹⁾				
25		P0_7				AN0	DA1	
26		P0_6				AN1	DA0	
27		P0_5				AN2		AVREF0
28		P0_4		TREO		AN3		ACMP0
29		P0_3				AN4		AVREF1
30		P0_2				AN5		ACMP1
31		P0_1				AN6		
32		P0_0				AN7		

 Table 1.7
 Pin Name Information by Pin Number

NOTE:

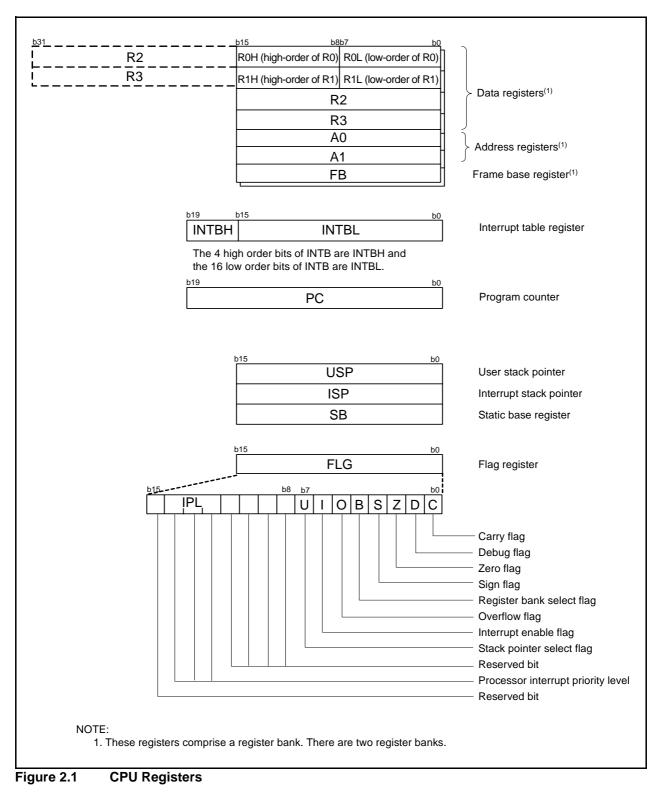
1. Can be assigned to the pin in parentheses by a program.

1.5 Pin Functions

Table 1.8 list Pin Functions.

Table 1.8 Pin Functions

Туре	Symbol	I/O Type	Description
Power supply input	VCC, VSS	I	Apply 2.7 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power	AVCC, AVSS	I	Power supply for the A/D converter.
supply input			Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	0	the XIN and XOUT pins. ⁽¹⁾ To use an external clock, input it to the XIN pin and leave the XOUT pin open.
INT interrupt input	INTO, INT1, INT3	I	INT interrupt input pins
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAO	0	Timer RA output pin
	TRAIO	I/O	Timer RA I/O pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Sharing output-compare output / input-capture input / PWM / PWM2 output pins
Timer RE	TREO	0	Timer RE output pin
Serial interface	CLK0	I/O	Clock I/O pin
	RXD0	I	Receive data input pin
	TXD0	0	Transmit data output pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
D/A converter	DA0 to DA1	0	Output pins from D/A converter
Comparator	AVREF0 to AVREF1	I	Reference voltage input pins to comparator
·	ACMP0 to ACMP1	I	Analog voltage input pins to comparator
	ACOUT0 to ACOUT1	0	Comparison result output pins of comparator
I/O port	P0_0 to P0_7, P1_0 to P1_7,	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input
	P3_1, P3_3 to P3_7, P4_5, P5_3, P5_4		or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P1_0 to P1_7 also function as LED drive ports.
Input port	P4_2, P4_6, P4_7	<u> </u>	Input-only ports


I: Input O: Output I/O: Input and output

NOTE:

1. Refer to the oscillator manufacturer for oscillation characteristics.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 to be used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

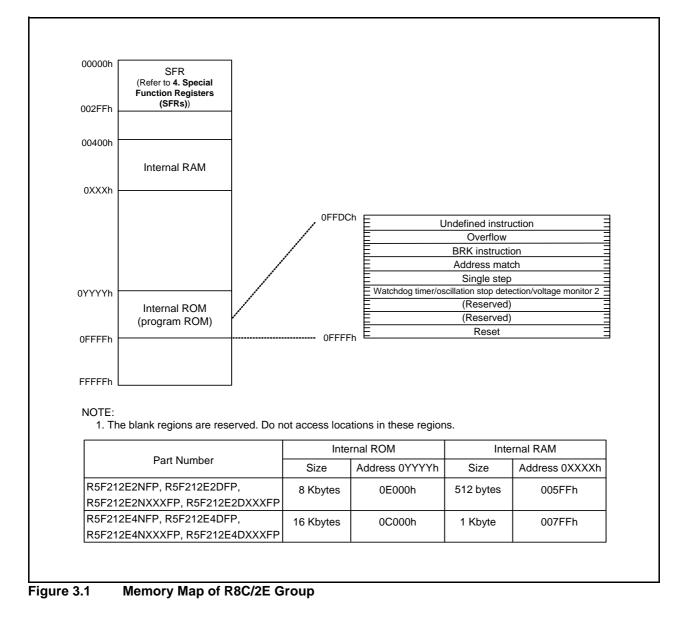
IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/2E Group


Figure 3.1 is a Memory Map of R8C/2E Group. The R8C/2E group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

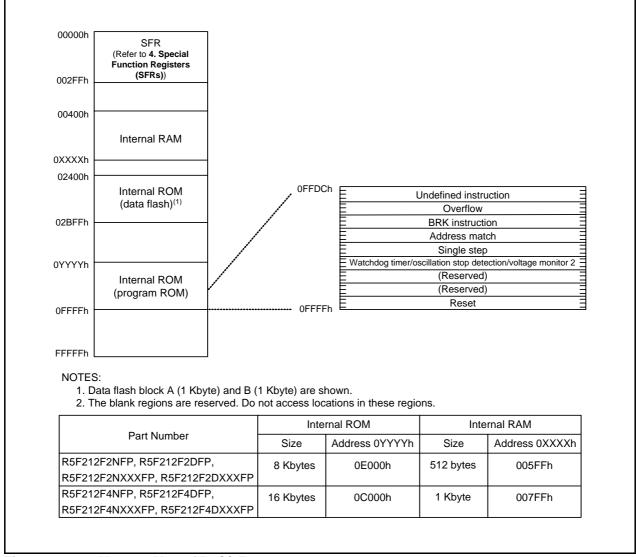
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

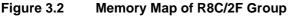
The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

3.2 R8C/2F Group

Figure 3.2 is a Memory Map of R8C/2F Group. The R8C/2F group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.


The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh	-		
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h	1		00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h 10000000b ⁽⁴⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			
0027h			
0028h			
0029h			
002Ah			
002Bh			
002Ch	High-Speed On-Chip Oscillator Control Register 7	FRA7	When Shipping

Table 4.1SFR Information (1)⁽¹⁾

0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 (2)	VCA2	0010000b
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽³⁾	VW1C	00001000b
0037h	Voltage Monitor 2 Circuit Control Register ⁽³⁾	VW2C	00h
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			

X: Undefined

NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

2. Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect this register.

3. Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect b2 and b3.

4. The CSPROINI bit in the OFS register is set to 0.

Address	Register	Symbol	After reset
0040h			
0041h			
0042h			
0043h			
0044h			
0045h			
0046h			
0047h	Timer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h			
0049h			
004Ah	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh		Intelo	700000000
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh			
0050h			
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
005211		JUNIC	777770000
0053h			
0054h			l
0055h			
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
00590			
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh	Comparator 0 Interrupt Control Register	CM0IC	XXXXX000b
005Ch	Comparator 1 Interrupt Control Register	CM1IC	XXXXX000b
005Dh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			1
006Eh			
006Fh			
0070h			
0071h			
0072h			
0073h			
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			
V: Undefined			

SFR Information (2)⁽¹⁾ Table 4.2

	Register	Symbol	After reset
Address 0080h	Rogiotor	Cymbol	7110110000
0081h			
0082h			
0083h			
0084h			
0085h			
0085h			
0080h			
0088h			
0089h			
008Ah			
008Bh			
008Ch			
008Dh			
008Eh			
008Fh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh	UART0 Transmit/Receive Mode Register	U0MR	00h
009Fh 00A0h	UART0 Transmit/Receive Mode Register UART0 Bit Rate Register	U0MR U0BRG	
009Fh 00A0h 00A1h	UART0 Bit Rate Register	U0BRG	XXh
009Fh 00A0h 00A1h 00A2h	UART0 Transmit/Receive Mode Register UART0 Bit Rate Register UART0 Transmit Buffer Register		XXh XXh
009Fh 00A0h 00A1h 00A2h 00A3h	UARTO Bit Rate Register UARTO Transmit Buffer Register	U0BRG U0TB	XXh XXh XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0	U0BRG U0TB U0C0	XXh XXh XXh 00001000b
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0	U0BRG U0TB U0C0	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A5h 00A6h 00A7h 00A8h 00A9h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00A9h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00A8h 00A8h 00A8h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00ABh 00AAh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A8h 00A8h 00AAh 00ABh 00ACh 00ADh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A6h 00A7h 00A8h 00A8h 00A8h 00A8h 00ABh 00ACh 00ACh 00ACh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A5h 00A5h 00A5h 00A7h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00AFh 00AFh 00B0h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00A8h 00ABh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A5h 00A6h 00A7h 00A8h 00A8h 00A8h 00AAh 00ABh 00ACh 00ACh 00ACh 00ACh 00AFh 00B0h 00B1h 00B2h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A5h 00A6h 00A8h 00A8h 00A8h 00A8h 00ABh 00ABh 00ACh 00A3h 00A4h 00A3h 00A4h 00A3h 00A4h 00A3h 00A4h 00A5h 00A4h 00A5h 00A4h 00A5h 00A4h 00A5h 00A5h 00A6h 00A7h 00A5h 00A6h 00A7h 00A5h 00A7h 00A5h 00A7h 00A6h 00A7h 00A7h 00A7h 00A7h 00A7h 00A6h 00A7h 00A7h 00A7h 00A7h 00A7h 00A6h 00A7h 00A7h 00A7h 00A7h 00A7h 00A7h 00A7h 00A7h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 00A7h 00A8h 000A7h 0008A 00007h 00007h 0008h 00007h 0008h 00007h 0008h 00007h 00080 0000000000	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A4h 00A5h 00A5h 00A5h 00A8h 00A8h 00A8h 00A8h 00A8h 00A8h 00A8h 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ASh 00ASh 00ACh 00ASh 00ASh 00ASh 00ASh 00ASh 00ASh 00ASh 00ASh 00ASh 00ASh 00A3h 00ASH 00ASH 000SCH 000SCH 000SCH 000SCH 000SCH 000SCH 000SCH 000SCH 000SCH 000SCH 000SCH 000SCH	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A5h 00A5h 00A5h 00A7h 00A8h 00A9h 00A8h 00A8h 00A2h 00ACh 00ASh 00ACh 00ASH 00ASH 000SSH 000SSH 000SSH 000SSH 000SSH	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00A8h 00A9h 00AAh 00ABh 00ACh 00A3h 000A3h 000A3h 000A3h 000A3h 000A3h 000A3h 000B3h 0000B3h 000B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00A8h 00AAh 00ABh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00B1h 00B3h 00B3h 00B5h 00B7h 00B8h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A8h 00AAh 00A8h 00AAh 00ABh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00B1h 00B3h 00B3h 00B5h 00B7h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A5h 00A5h 00A6h 00A7h 00A8h 00A8h 00A8h 00A8h 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00B1h 00B2h 00B3h 00B3h 00B6h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A5h 00A5h 00A5h 00A7h 00A8h 00A8h 00A8h 00A8h 00A8h 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00B0h 00B3h 00B3h 00B3h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A5h 00A5h 00A5h 00A7h 00A8h 00A8h 00A8h 00A8h 00A8h 00A2h 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00B3h 00B3h 00B3h 00B5h 00B5h 00B3h 00B3h 00B3h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00AAh 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00B0h 00B3h 00B3h 00B3h 00B6h 00B3h 00B3h 00B3h 00B3h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A3h 00A3h 00A5h 00A5h 00A5h 00A7h 00A8h 00A8h 00A8h 00A8h 00A8h 00A2h 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00B3h 00B3h 00B3h 00B5h 00B5h 00B3h 00B3h 00B3h 00B3h 00B3h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh
009Fh 00A0h 00A1h 00A2h 00A3h 00A4h 00A5h 00A6h 00A7h 00A8h 00A9h 00A8h 00A9h 00AAh 00ABh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00ACh 00B1h 00B2h 00B3h 00B4h 00B5h 00B5h 00B6h 00B6h 00B6h 00B6h 00B6h 00B6h 00BCh 00B0h	UART0 Bit Rate Register UART0 Transmit Buffer Register UART0 Transmit/Receive Control Register 0 UART0 Transmit/Receive Control Register 1	U0BRG U0TB U0C0 U0C1	XXh XXh XXh 00001000b 00000010b XXh

SFR Information (3)⁽¹⁾ Table 4.3

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h			XXh
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			<u> </u>
00CCh			
00CDh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Control Register 2	ADCON2	00h
00D5h			
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h	D/A Register 0	DA0	00h
00D9h			
00DAh	D/A Register 1	DA1	00h
00DBh			
00DCh	D/A Control Register	DACON	00h
00DDh		BROOM	
00DEh			
00DEh			<u> </u>
00E0h	Port P0 Register	P0	00h
00E0h	Port P1 Register	P1	00h
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h		50	
00E5h	Port P3 Register	P3	00h
00E6h			
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	00h
00E9h	Port P5 Register	P5	00h
00EAh	Port P4 Direction Register	PD4	00h
00EBh	Port P5 Direction Register	PD5	00h
00ECh	-		
00EDh			
00EEh			
00EFh			
00F0h			
00F1h			
00F2h			
00F3h			
00F4h			<u> </u>
00F4h			
00F5h	Din Soloct Ponistor 2	PINSR2	00h
	Pin Select Register 2 Pin Select Register 3		
00F7h		PINSR3	00h
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTF	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	00h
00FEh	Port P1 Drive Capacity Control Register	P1DRR	00h
00FFh			
X: Undefined			

SFR Information (4)⁽¹⁾ Table 4.4

Address	Register	Symbol	After reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h			
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
0103h	Timer RB I/O Control Register	TRBIOC	00h
010An	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register		
	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			
0118h	Timer RE Counter Data Register	TRESEC	00h
0119h	Timer RE Compare Data Register	TREMIN	00h
011Ah			
011Bh			
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Clock Source Select Register	TRECSR	00001000b
011Eh		INECON	000010000
0120h	Timer RC Mode Register	TRCMR	01001000b
0120h	Timer RC Control Register 1	TRCCR1	00h
0121h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0122h	Timer RC Status Register	TRCSR	01110000b
0123h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
	Timer RC I/O Control Register 1		10001000b
0125h	Timer RC Counter	TRCIOR1 TRC	
0126h	limer RC Counter	IRC	00h
0127h	T DOO ID I CA	TROOPA	00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h		750055	FFh
012Ah	Timer RC General Register B	TRCGRB	FFh
012Bh		750050	FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh			FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh			FFh
0130h	Timer RC Control Register 2	TRCCR2	00011111b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h			
0134h			
0135h			
0136h			
0137h			
0138h			
0139h			1
013Ah			
013Bh			
013Ch			
013Dh			1
			1
		1	1
013Eh 013Fh			

Table 4.5 SFR Information (5)⁽¹⁾

Address	Register	Symbol	After reset
0140h	Register	Cymbol	
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h			
0149h			
014Bh			
014Bh			
014Dh			
014Eh			
014En			
0150h			
0150h			
0152h			
0153h			
0154h			
0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
015Ch			
015Dh			
015Eh			
015Fh			
0160h			
0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			1
016Dh			1
016Eh			
016Fh			
0170h		1	
0171h			
0172h			
0173h			
0174h	Comparator 0 Control Register	ACCR0	00001000b
0175h	Comparator 1 Control Register	ACCR1	00001000b
0176h			
0177h	Comparator Mode Register	ACMR	00h
0178h			
0178h			<u> </u>
0179n 017Ah			l
017An 017Bh			l
01705			l
017Ch			
017Dh			
017Eh			
017Fh			1
X: Undefined			

SFR Information (6)⁽¹⁾ Table 4.6

Address	Register	Symbol	After reset
0180h	Regisier	Symbol	Alter Teset
0180h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0192h		L	
0193h			
01941 0195h			
0195h 0196h			
01900			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01A90			
01AAh			
01ABh			
01ACh			
01ADh			<u> </u>
01AEh			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h	Flash Memory Control Register 4	FMR4	0100000b
01B4h			
01B5h	Flash Memory Control Register1	FMR1	100000Xb
01B6h			
01B7h	Flash Memory Control Register 0	FMR0	0000001b
01B8h			
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BDh			
01BEn 01BFh			
VIDEII			1

OFS

(Note 2)

Table 4.7SFR Information (7)⁽¹⁾

FFFFh Option Function Select Register

X: Undefined NOTES:

Γ

1. The blank regions are reserved. Do not access locations in these regions.

2. The OFS register cannot be changed by a program. Use a flash programmer to write to it.

5. Resets

The following resets are implemented: hardware reset, power-on reset, voltage monitor 1 reset, voltage monitor 2 reset, watchdog timer reset, and software reset.

Table 5.1 lists the Reset Names and Sources. Figure 5.1 shows the Block Diagram of Reset Circuit.

Table 5.1Reset Names and Sources

Reset Name	Source
Hardware reset	Input voltage of RESET pin is held "L"
Power-on reset	VCC rises
Voltage monitor 1 reset	VCC falls (monitor voltage: Vdet1)
Voltage monitor 2 reset	VCC falls (monitor voltage: Vdet2)
Watchdog timer reset	Underflow of watchdog timer
Software reset	Write 1 to PM03 bit in PM0 register

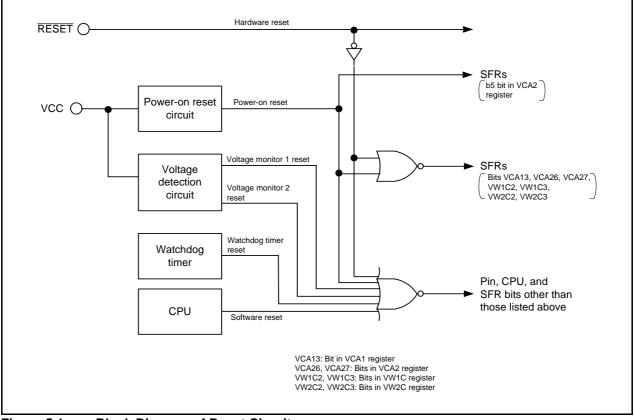
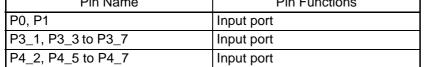



Figure 5.1 Block Diagram of Reset Circuit

Table 5.2 shows the Pin Functions while RESET Pin Level is "L", Figure 5.2 shows the CPU Register Status after Reset, Figure 5.3 shows the Reset Sequence, and Figure 5.4 shows the OFS Register.

Pin Name	Pin Functions
P0, P1	Input port
P3_1, P3_3 to P3_7	Input port
P4_2, P4_5 to P4_7	Input port
P5_3, P5_4	Input port

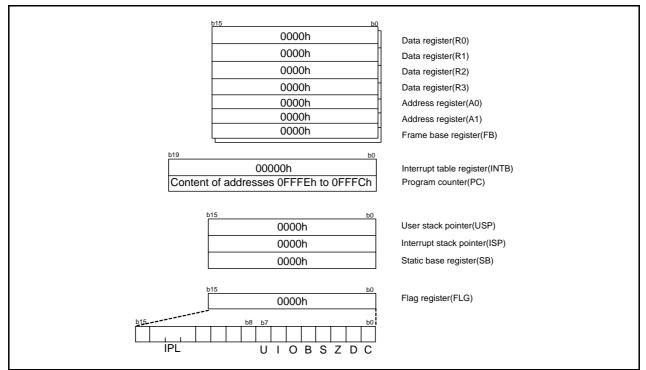
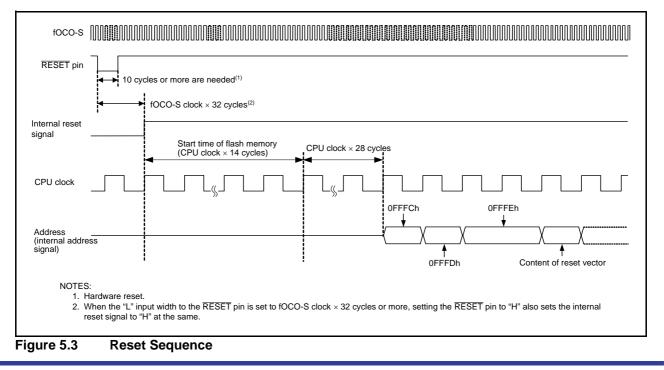



Figure 5.2

CPU Register Status after Reset

b7 b6 b5 b4 b3 b2 b1 b0	-			
1011	Symbol	Address	When Shipping	
┱╍┲╺┲	OFS	0FFFFh	FFh ⁽²⁾	
	Bit Symbol	Bit Name	Function	RW
	WDTON	Watchdog timer start select bit	0 : Starts w atchdog timer automatically after reset 1 : Watchdog timer is inactive after reset	RW
	(b1)	Reserved bit	Set to 1.	RW
	ROMCR	ROM code protect disabled bit	0 : ROM code protect disabled 1 : ROMCP1 enabled	RW
	ROMCP1	ROM code protect bit	0 : ROM code protect enabled 1 : ROM code protect disabled	RW
	(b4)	Reserved bit	Set to 1.	RW
	(b5)	Reserved bit	Set to 0.	RW
	(b6)	Reserved bit	Set to 1.	RW
	CSPROINI	Count source protect mode after reset select bit	0 : Count source protect mode enabled after reset 1 : Count source protect mode disabled after reset	RW

1. The OFS register is on the flash memory. Write to the OFS register with a program. After writing is completed, do not write additions to the OFS register.

2. If the block including the OFS register is erased, FFh is set to the OFS register.

Figure 5.4 OFS Register

5.1 Hardware Reset

A reset is applied using the $\overline{\text{RESET}}$ pin. When an "L" signal is applied to the $\overline{\text{RESET}}$ pin while the supply voltage meets the recommended operating conditions, pins, CPU, and SFRs are all reset (refer to **Table 5.2 Pin Functions while RESET Pin Level is "L"**). When the input level applied to the RESET pin changes from "L" to "H", a program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

Refer to 4. Special Function Registers (SFRs) for the state of the SFRs after reset.

The internal RAM is not reset. If the **RESET** pin is pulled "L" while writing to the internal RAM is in progress, the contents of internal RAM will be undefined.

Figure 5.5 shows an Example of Hardware Reset Circuit and Operation and Figure 5.6 shows an Example of Hardware Reset Circuit (Usage Example of External Supply Voltage Detection Circuit) and Operation.

5.1.1 When Power Supply is Stable

- (1) Apply "L" to the $\overline{\text{RESET}}$ pin.
- (2) Wait for $10 \,\mu s$ or more.
- (3) Apply "H" to the $\overline{\text{RESET}}$ pin.

5.1.2 Power On

- (1) Apply "L" to the $\overline{\text{RESET}}$ pin.
- (2) Let the supply voltage increase until it meets the recommended operating conditions.
- (3) Wait for td(P-R) or more to allow the internal power supply to stabilize (refer to **21. Electrical Characteristics**).
- (4) Wait for 10 μ s or more.
- (5) Apply "H" to the $\overline{\text{RESET}}$ pin.

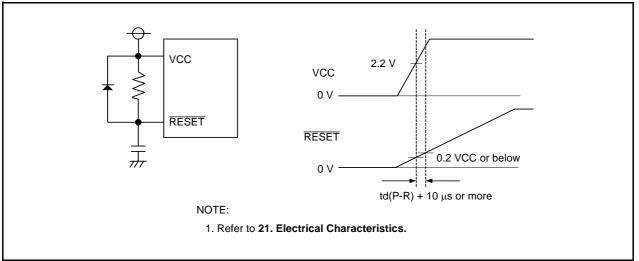


Figure 5.5 Example of Hardware Reset Circuit and Operation

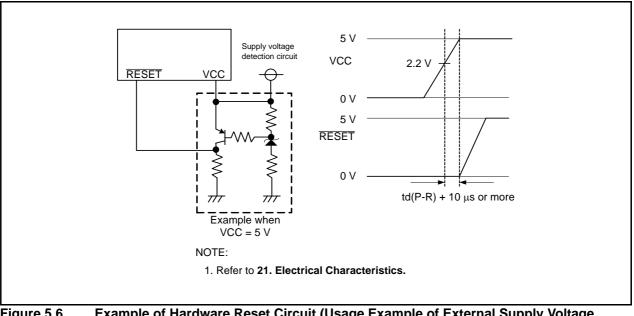
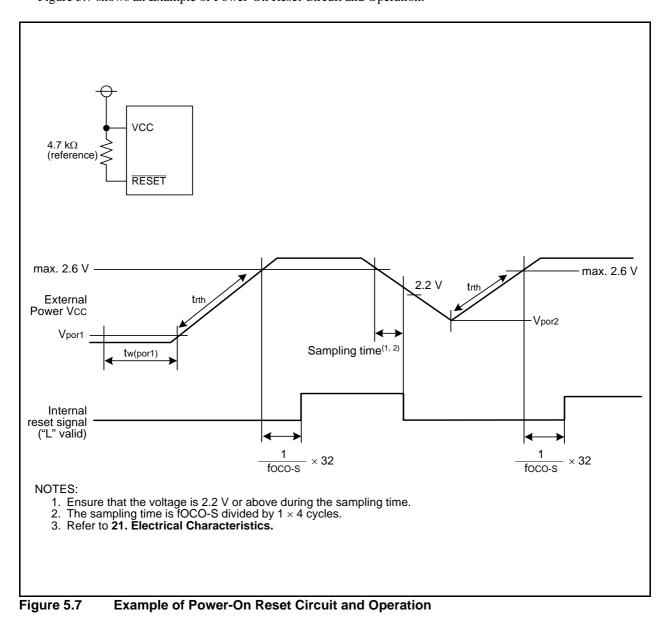



Figure 5.6 Example of Hardware Reset Circuit (Usage Example of External Supply Voltage Detection Circuit) and Operation

5.2 Power-On Reset Function

When the $\overline{\text{RESET}}$ pin is connected to the VCC pin via a pull-up resistor, and the VCC pin voltage level rises while the rise gradient is trth or more, the power-on reset function is enabled and the MCU resets its pins, CPU, and SFR. When a capacitor is connected to the $\overline{\text{RESET}}$ pin, too, always keep the voltage to the $\overline{\text{RESET}}$ pin 0.8VCC or more. When the input voltage to the VCC pin reaches the maximum 2.6 V or above, the low-speed on-chip oscillator clock starts counting. When the low-speed on-chip oscillator clock count reaches 32, the internal reset signal is held "H" and the MCU enters the reset sequence (refer to Figure 5.3). The low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock after reset.

Refer to **4. Special Function Registers (SFRs)** for the states of the SFR after power-on reset. Figure 5.7 shows an Example of Power-On Reset Circuit and Operation.

5.3 Voltage Monitor 1 Reset

A reset is applied using the on-chip voltage detection 1 circuit. The voltage detection 1 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet1.

When the input voltage to the VCC pin drops the Vdet1 level or below, the pins, CPU, and SFR are reset and a program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

The voltage monitor 1 does not reset some portions of the SFR. Refer to **4. Special Function Registers (SFRs)** for details.

The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet1 level or below while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

Refer to 6. Voltage Detection Circuit for details of voltage monitor 1 reset.

5.4 Voltage Monitor 2 Reset

A reset is applied using the on-chip voltage detection 2 circuit. The voltage detection 2 circuit monitors the input voltage to the VCC pin. The voltage monitored is Vdet2.

When the input voltage to the VCC pin drops the Vdet2 level or below, the pins, CPU, and SFR are reset and the program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

The voltage monitor 2 does not reset some SFRs. Refer to **4. Special Function Registers (SFRs)** for details.

The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet2 level or below while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

Refer to 6. Voltage Detection Circuit for details of voltage monitor 2 reset.

5.5 Watchdog Timer Reset

When the PM12 bit in the PM1 register is set to 1 (reset when watchdog timer underflows), the MCU resets its pins, CPU, and SFR if the watchdog timer underflows. Then the program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

The watchdog timer reset does not reset some SFRs. Refer to **4. Special Function Registers (SFRs)** for details. The internal RAM is not reset. When the watchdog timer underflows, the contents of internal RAM are undefined. Refer to **13. Watchdog Timer** for details of the watchdog timer.

5.6 Software Reset

When the PM03 bit in the PM0 register is set to 1 (MCU reset), the MCU resets its pins, CPU, and SFR. The program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected for the CPU clock.

The software reset does not reset some SFRs. Refer to **4. Special Function Registers (SFRs)** for details. The internal RAM is not reset.

6. Voltage Detection Circuit

The voltage detection circuit monitors the input voltage to the VCC pin. This circuit can be used to monitor the VCC input voltage by a program. Alternately, voltage monitor 1 interrupt, voltage monitor 1 reset, voltage monitor 2 interrupt, and voltage monitor 2 reset can also be used.

Table 6.1 lists the Specifications of Voltage Detection Circuit and Figures 6.1 to 6.3 show the Block Diagrams. Figures 6.4 to 6.6 show the Associated Registers.

	Item	Voltage Detection 1	Voltage Detection 2
VCC Monitor	Voltage to monitor	Vdet1	Vdet2
	Detection target	Passing through Vdet1 by rising or falling	Passing through Vdet2 by rising or falling
	Monitor	VW1C3 bit in VW1C register	VCA13 bit in VCA1 register
		Whether VCC is higher or lower than Vdet1	Whether VCC is higher or lower than Vdet2
Process	Reset	Voltage monitor 1 reset	Voltage monitor 2 reset
When Voltage is Detected		Reset at Vdet1 > VCC; restart CPU operation after a specified time	Reset at Vdet2 > VCC; restart CPU operation after a specified time
	Interrupt	Voltage monitor 1 interrupt	Voltage monitor 2 interrupt
		Interrupt request at Vdet1 > VCC and VCC > Vdet1 when digital filter is enabled; interrupt request at Vdet1 > VCC or VCC > Vdet1 when digital filter is disabled	Interrupt request at Vdet2 > VCC and VCC > Vdet2 when digital filter is enabled; interrupt request at Vdet2 > VCC or VCC > Vdet2 when digital filter is disabled
Digital Filter	Switch enabled/disabled	Available	Available
	Sampling time	(Divide-by-n of fOCO-S) × 4 n: 1, 2, 4, and 8	(Divide-by-n of fOCO-S) × 4 n: 1, 2, 4, and 8

 Table 6.1
 Specifications of Voltage Detection Circuit

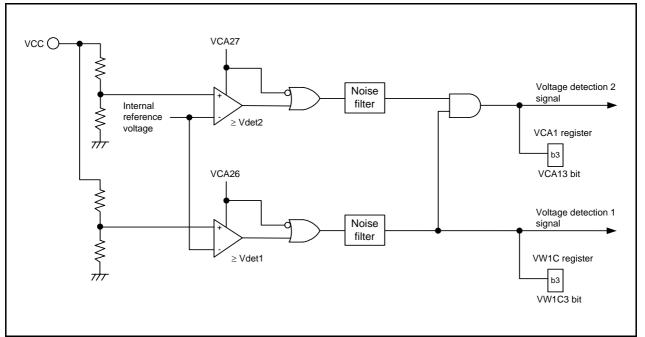


Figure 6.1

Block Diagram of Voltage Detection Circuit

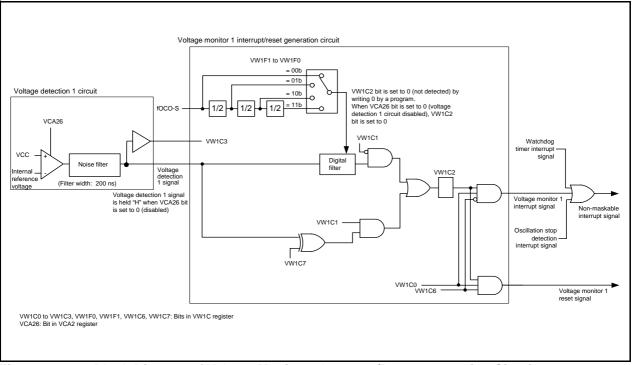
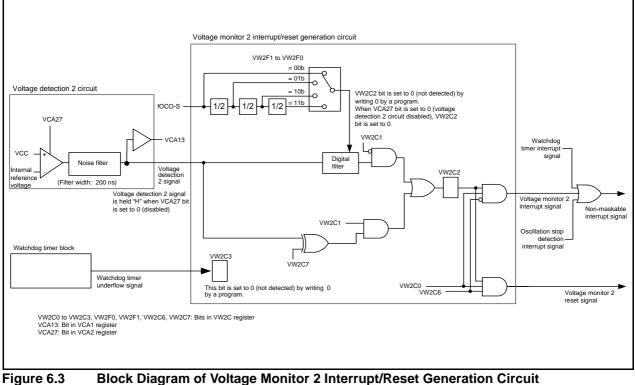



Figure 6.2 Block Diagram of Voltage Monitor 1 Interrupt/Reset Generation Circuit

Block Diagram of Voltage Monitor 2 Interrupt/Reset Generation Circuit

Voltage Detection F	Register 1		_		_
b7 b6 b5 b4 b3 b2 b1 b0					
00000000	Symbol	Address		After Reset ⁽²⁾	
┕┸╌╌╌╌╌	VCA1	0031h		00001000b	
	Bit Symbol	Bit Name		Function	RW
	(b2-b0)	Reserved bits		Set to 0.	RW
	VCA13	Voltage detection 2 signal mo flag ⁽¹⁾	onitor	0 : VCC < Vdet2 1 : VCC ≥ Vdet2 or voltage detection 2 circuit disabled	RO
	 (b7-b4)	Reserved bits		Set to 0.	RW
NOTES:	. ,	Į		l	44
The VCA13 bit circuit disabled	is set to 1 (V).	$CC \ge Vdet 2$) when the VCA2	27 bit in th	e VCA2 register is set to 0 (voltage detecti	on 2
Voltage Detection F	Register 2 ⁽¹)			
b7 b6 b5 b4 b3 b2 b1 b0					
10000	Symbol	Address		After Reset ⁽⁴⁾	
┖┰┵┰┶┰┶┰┷┰┙			Power		
	-	Bit Name		Function	RW
			0 : Disa		
	VCA20	consumption enable bit ⁽⁵⁾		•	RW
	 (b4-b1)	Reserved bits	Set to 0		RW
	(b5)	Reserved bit	Set to 1		RW
	/oltage Detection Register 2 ⁽¹⁾ b7 b6 b5 b4 b3 b2 b1 b0 VCA2 0032h Pow er-on reset or hardw are reset : 00100000b Bit Symbol Bit Name VCA20 Internal pow er low VCA20 Internal pow er low VCA20 Internal pow er low 0 : Disables low consumption RV - Reserved bits - Reserved bits - Reserved bit VCA26 Voltage detection 1 enable VCA26 Voltage detection 1 enable Voltage detection 2 enable 0 : Voltage detection 1 circuit disabled 1 : Voltage detection 2 circuit disabled RV	RW			
		RW			
NOTES:			1		<u> </u>
 Set the PRC3 b To use the volt 	age monitor 1	interrupt/reset or the VW1C3	3 bit in the		
	-			VCA1 register, set the VCA27 bit to 1. w aits for td(E-A) to elapse before starting	
 Softw are rese register. 	t, watchdog f	timer reset, voltage monitor 1 r	reset, an	d voltage monitor 2 reset do not affect this	
		en entering to w ait mode. To s ing Reduced Internal Powe		CA20 bit, follow the procedure show n in Fi gumption Using VCA20 bit.	gure
Figure 6.4 Regis	sters VCA	1 and VCA2			

RV RV RV RV
RW
RW
RW
RC
RW
RW
RW
RW

7. The VW1C7 bit is enabled when the VW1C1 bit is set to 1 (digital filter disabled mode).

8. Bits VW1C2 and VW1C3 remain unchanged after a software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset.

9. When the VW1C6 bit is set to 1 (voltage monitor 1 reset mode), set the VW1C7 bit to 1 (when VCC reaches Vdet1 or below). (Do not set to 0.)

r

7 106	b5 b4	b3 t	2 b1	b0			
				Symbol	Address	After Reset ⁽⁸⁾	
				VW2C	0037h	00h	
				Bit Symbo		Function	R
				VW2C0	Voltage monitor 2 interrupt/reset enable bit ⁽⁶⁾	0 : Disable 1 : Enable	R
				VW2C1	Voltage monitor 2 digital filter disable mode select bit ⁽²⁾	 0 : Digital filter enabled mode (digital filter circuit enabled) 1 : Digital filter disabled mode (digital filter circuit disabled) 	R
				VW2C2	Voltage change detection flag ^(3,4,8)	0 : Not detected 1 : VCC has crossed Vdet2	R
				VW2C3	WDT detection flag ^(4,8)	0 : Not detected 1 : Detected	R
				VW2F0	Sampling clock select bits	^{b5 b4} 0 0 : fOCO-S divided by 1 0 1 : fOCO-S divided by 2	R
				WW2F1		1 0 : fOCO-S divided by 4 1 1 : fOCO-S divided by 8	R
				VW2C6	Voltage monitor 2 circuit mode select bit ⁽⁵⁾	0 : Voltage monitor 2 interrupt mode 1 : Voltage monitor 2 reset mode	R
				VW2C7	Voltage monitor 2 interrupt/reset generation condition select bit ^(7,9)	0 : When VCC reaches Vdet2 or above 1 : When VCC reaches Vdet2 or below	R
2. 3.	Se To bit The ena	use befo e VN able	the ore w V2C2 d).	voltage monitor vriting 1. 2 bit is enabled	w hen the VCA27 bit in the VCA2 re	e return again, w rite 0 to the VW2C1	
4.			s bit to it		ım. When 0 is w ritten by a program	, it is set to 0 (and remains unchanged even if	1 is
	The	eV	V2C) bit is enabled	when the VCA27 bit in the VCA2 re	Itage monitor 2 interrupt/enables reset). egister is set to 1 (voltage detection 2 circuit vit is set to 0 (voltage detection 2 circuit disable	ed).
					when the VW2C1 bit is set to 1 (dig		
	The		-			reset, watchdog timer reset, voltage monitor	1 reset
6. 7.	Bits	sV		2 and VW2C3 ro nitor 2 reset.	emain unchanged after a software	reset, watchdog timer reset, voltage monitor	110000

Figure 6.6 VW2C Register

6.1 VCC Input Voltage

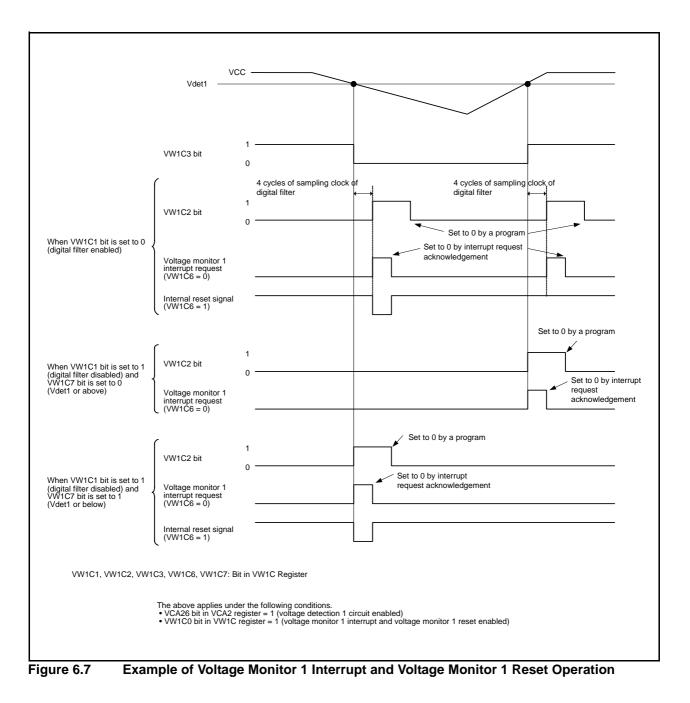
6.1.1 Monitoring Vdet1

Set the VCA26 bit in the VCA2 register to 1 (voltage detection 1 circuit enabled). After td(E-A) has elapsed (refer to **21. Electrical Characteristics**), Vdet1 can be monitored by the VW1C3 bit in the VW1C register.

6.1.2 Monitoring Vdet2

Set the VCA27 bit in the VCA2 register to 1 (voltage detection 2 circuit enabled). After td(E-A) has elapsed (refer to **21. Electrical Characteristics**), Vdet2 can be monitored by the VCA13 bit in the VCA1 register.

6.2 Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset


Table 6.2 lists the Procedure for Setting Bits Associated with Voltage Monitor 1 Interrupt and Reset. Figure 6.7 shows an Example of Voltage Monitor 1 Interrupt and Voltage Monitor 1 Reset Operation. To use the voltage monitor 1 interrupt or voltage monitor 1 reset to exit stop mode, set the VW1C1 bit in the VW1C register to 1 (digital filter disabled).

	When Using	Digital Filter	When Not Usi	ng Digital Filter							
Step	Voltage Monitor 1	Voltage Monitor 1	Voltage Monitor 1	Voltage Monitor 1							
	Interrupt	Reset	Interrupt	Reset							
1	Set the VCA26 bit in the	ne VCA2 register to 1 (v	voltage detection 1 circ	uit enabled)							
2	Wait for td(E-A)										
	Select the sampling cl	Select the sampling clock of the digital filter Select the timing of the interrupt and reset									
3	by the VW1F0 to VW1	F1 bits in the VW1C	request by the VW1C7	bit in the VW1C							
	register		register ⁽¹⁾								
4(2)	Set the VW1C1 bit in t	he VW1C register to 0	Set the VW1C1 bit in the VW1C register to 1								
4(-)	(digital filter enabled)		(digital filter disabled)								
5(2)	Set the VW1C6 bit in	Set the VW1C6 bit in	Set the VW1C6 bit in	Set the VW1C6 bit in							
	the VW1C register to	the VW1C register to	the VW1C register to	the VW1C register to							
	0 (voltage monitor 1	1 (voltage monitor 1	0 (voltage monitor 1	1 (voltage monitor 1							
	interrupt mode)	reset mode)	interrupt mode)	reset mode)							
6	Set the VW1C2 bit in t	he VW1C register to 0	(passing of Vdet1 is no	t detected)							
7	Set the CM14 bit in the	e CM1 register to 0	-								
	(low-speed on-chip os	cillator on)									
8	Wait for 4 cycles of the	e sampling clock of the	 – (No wait time required) 								
	digital filter										
9	Set the VW1C0 bit in t	he VW1C register to 1	(voltage monitor 1 inter	rupt/reset enabled)							

NOTES:

1. Set the VW1C7 bit to 1 (when VCC reaches Vdet1 or below) for the voltage monitor 1 reset.

2. When the VW1C0 bit is set to 0, steps 3, 4, and 5 can be executed simultaneously (with 1 instruction).

6.3 Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset

Table 6.3 lists the Procedure for Setting Bits Associated with Voltage Monitor 2 Interrupt and Reset. Figure 6.8 shows an Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Operation. To use the voltage monitor 2 interrupt or voltage monitor 2 reset to exit stop mode, set the VW2C1 bit in the VW2C register to 1 (digital filter disabled).

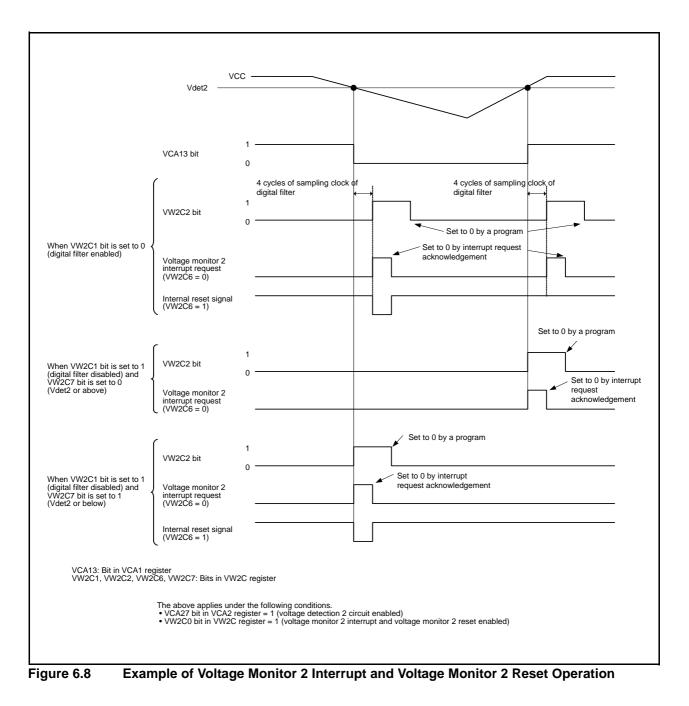

	When Using	Digital Filter	When Not Usi	ng Digital Filter							
Step	Voltage Monitor 2	Voltage Monitor 2	Voltage Monitor 2	Voltage Monitor 2							
	Interrupt	Reset	Interrupt	Reset							
1	Set the VCA27 bit in the	he VCA2 register to 1 (v	voltage detection 2 circ	uit enabled)							
2	Wait for td(E-A)										
	Select the sampling cl	Select the sampling clock of the digital filter Select the timing of the interrupt and reset									
3	by the VW2F0 to VW2	Presence 2012 Presence 201	request by the VW2C7	7 bit in the VW2C							
	register		register ⁽¹⁾								
4	Set the VW2C1 bit in t	he VW2C register to 0	Set the VW2C1 bit in the VW2C register to 1								
4	(digital filter enabled)		(digital filter disabled)								
5(2)	Set the VW2C6 bit in	Set the VW2C6 bit in	Set the VW2C6 bit in	Set the VW2C6 bit							
	the VW2C register to	the VW2C register to	the VW2C register to	the VW2C register							
	0 (voltage monitor 2	1 (voltage monitor 2	0 (voltage monitor 2	1 (voltage monitor 2							
	interrupt mode)	reset mode)	interrupt mode)	reset mode)							
6	Set the VW2C2 bit in t	the VW2C register to 0	(passing of Vdet2 is no	t detected)							
7	Set the CM14 bit in the	e CM1 register to 0	-								
	(low-speed on-chip os	cillator on)									
8	Wait for 4 cycles of the	e sampling clock of the	- (No wait time required)								
	digital filter										
9	Set the VW2C0 bit in t	the VW2C register to 1	(voltage monitor 2 inter	rupt/reset enabled)							

Table 6.3	Procedure for Setting Bits	Associated with Voltage	Monitor 2 Interrupt and Reset
-----------	----------------------------	-------------------------	-------------------------------

NOTES:

1. Set the VW2C7 bit to 1 (when VCC reaches Vdet2 or below) for the voltage monitor 2 reset.

2. When the VW2C0 bit is set to 0, steps 3, 4, and 5 can be executed simultaneously (with 1 instruction).

7. Programmable I/O Ports

There are 25 programmable Input/Output ports (I/O ports) P0, P1, P3_1, P3_3 to P3_7, P4_5, P5_3, and P5_4. Also, P4_6 and P4_7 can be used as input-only ports if the XIN clock oscillation circuit is not used, and the P4_2 can be used as an input-only port if the A/D converter is not used.

Table 7.1 lists an Overview of Programmable I/O Ports.

Ports	I/O	Type of Output	I/O Setting	Internal Pull-Up Resister
P0, P1	I/O	CMOS3 State	Set per bit	Set every 4 bits ⁽¹⁾
P3_1, P3_3 to P3_7	I/O	CMOS3 State	Set per bit	Set every 2 bits, 4 bits ⁽¹⁾
P4_5	I/O	CMOS3 State	Set per bit	Set every bit ⁽¹⁾
P5_3, P5_4	I/O	CMOS3 State	Set per bit	Set every bit ⁽¹⁾
P4_2 ⁽²⁾ P4_6, P4_7 ⁽³⁾	Ι	(No output function)	None	None

Table 7.1 Overview of Programmable I/O Ports

NOTES:

- 1. In input mode, whether an internal pull-up resistor is connected or not can be selected by registers PUR0 and PUR1.
- 2. When the A/D converter is not used, this port can be used as the input-only port.
- 3. When the XIN clock oscillation circuit is not used, these ports can be used as the input-only ports.

7.1 Functions of Programmable I/O Ports

The PDi_j (j = 0 to 7) bit in the PDi (i = 0, 1, 3 to 5) register controls I/O of the ports P0, P1, P3_1, P3_3 to P3_7, P4_5, P5_3, and P5_4. The Pi register consists of a port latch to hold output data and a circuit to read pin states. Figures 7.1 to 7.5 show the Configurations of Programmable I/O Ports. Table 7.2 lists the Functions of Programmable I/O Ports. Also, Figure 7.7 shows the PDi (i = 0, 1, and 3 to 5) Register. Figure 7.8 shows the Pi (i = 0, 1, and 3 to 5) Register, Figure 7.9 shows Registers PINSR2 and PINSR3, Figure 7.10 shows the PMR Register, Figure 7.11 shows Registers PUR0 and PUR1, and Figure 7.12 shows the P1DRR Register.

Table 7.2 Functions of Programmable I/O Ports

Operation When	Value of PDi_j Bit in PDi Register ⁽¹⁾					
Accessing Pi Register	When PDi_j Bit is Set to 0 (Input Mode)	When PDi_j Bit is Set to 1 (Output Mod				
Reading	Read pin input level	Read the port latch				
Writing	Write to the port latch	Write to the port latch. The value written to the port latch is output from the pin.				

i = 0, 1, 3 to 5 j = 0 to 7

NOTE:

1. Nothing is assigned to bits PD3_0, PD3_2, PD4_0 to PD4_4, PD4_6, and PD4_7.

7.2 Effect on Peripheral Functions

Programmable I/O ports function as I/O ports for peripheral functions (Refer to **Table 1.7 Pin Name Information by Pin Number**).

Table 7.3 lists the Setting of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions (i = 0, 1, 3 to 5 j = 0 to 7). Refer to the description of each function for information on how to set peripheral functions.

Table 7.3 Setting of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions (i = 0, 1, 3 to 5 j = 0 to 7)

I/O of Peripheral Functions	PDi_j Bit Settings for Shared Pin Functions
Input	Set this bit to 0 (input mode).
Output	This bit can be set to either 0 or 1 (output regardless of the port setting)

7.3 Pins Other than Programmable I/O Ports

Figure 7.6 shows the Configuration of I/O Pins.

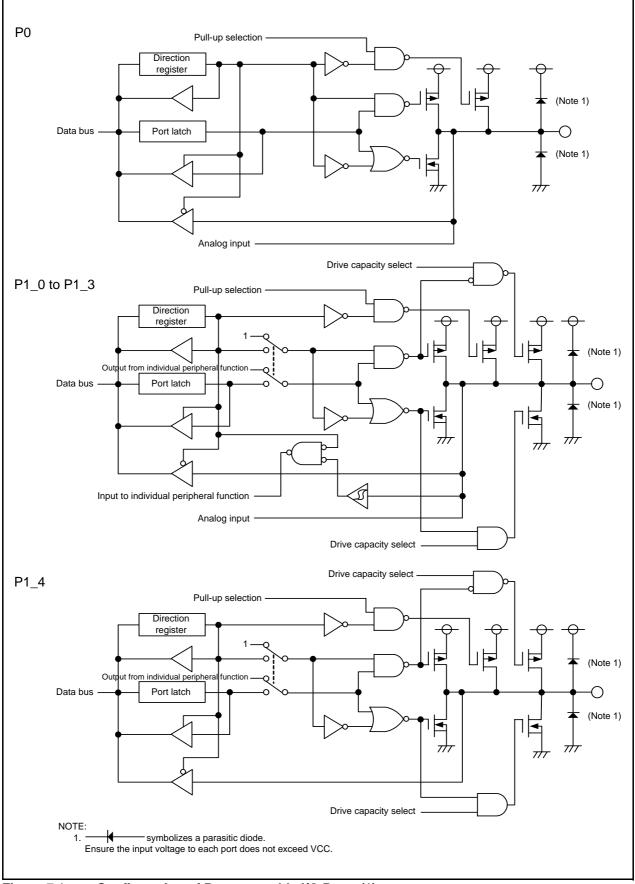
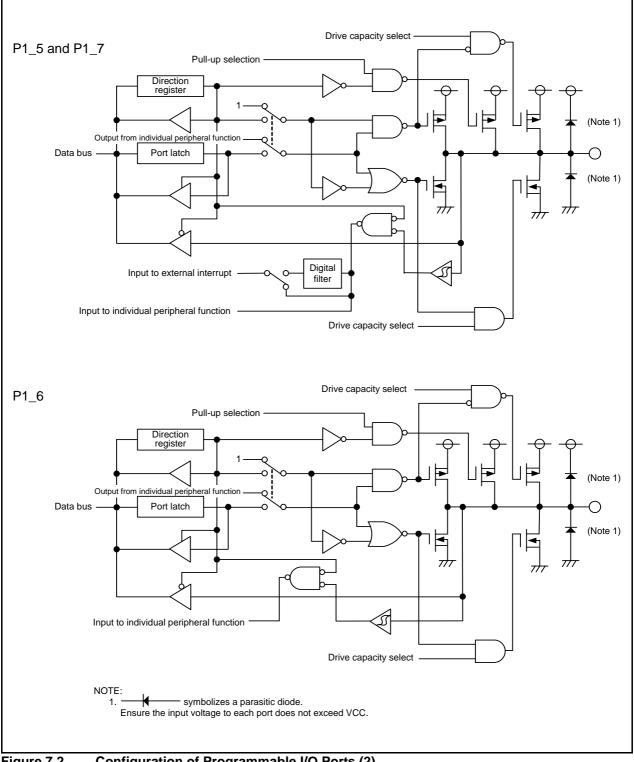
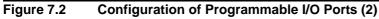




Figure 7.1 Configuration of Programmable I/O Ports (1)

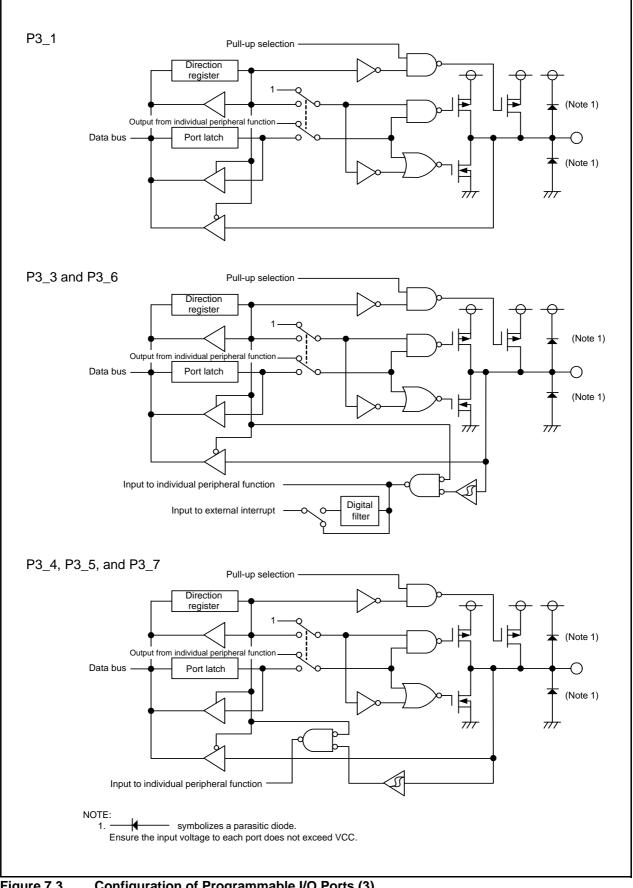
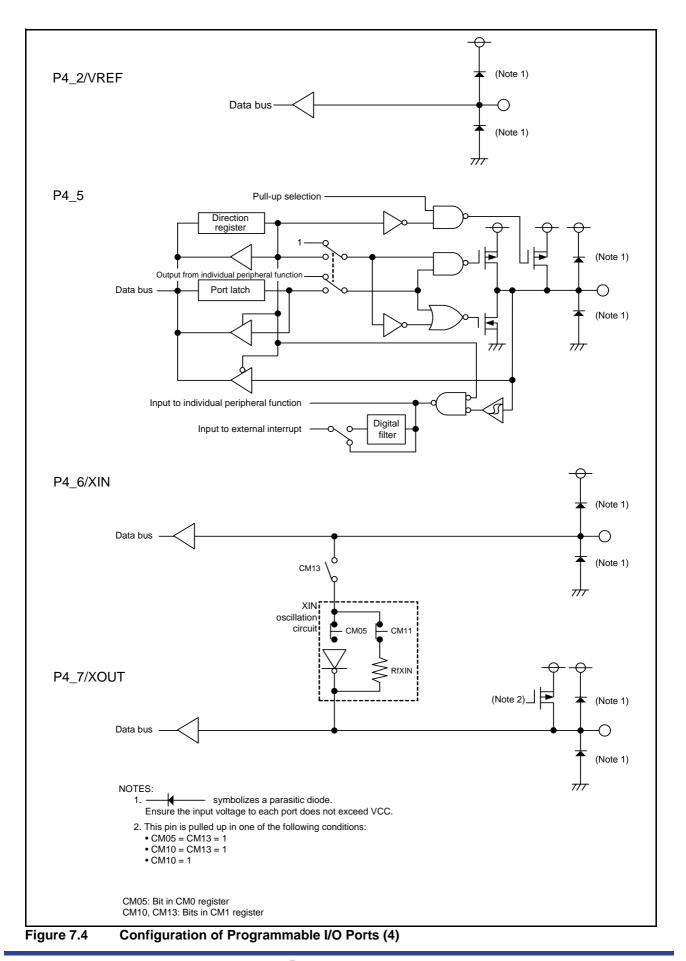
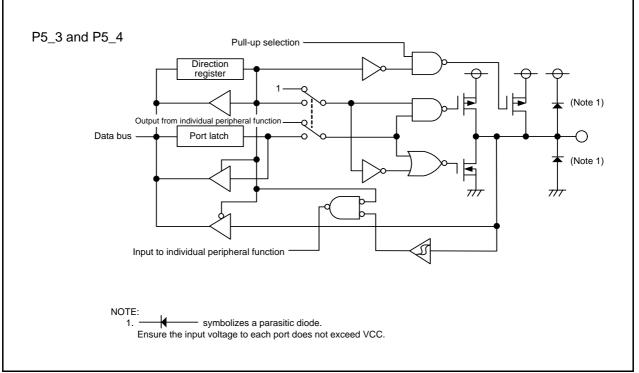
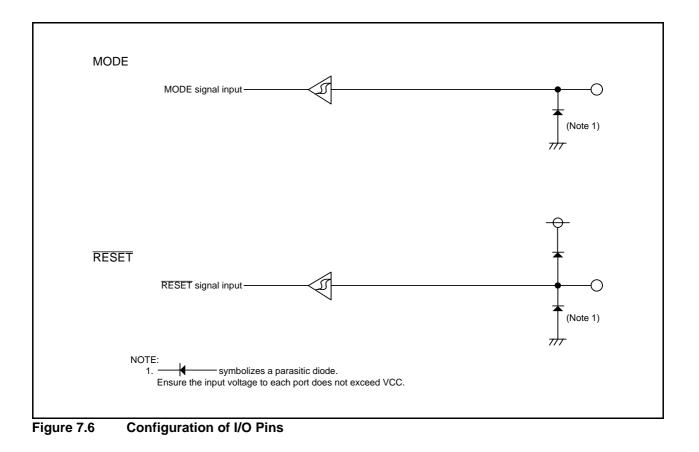
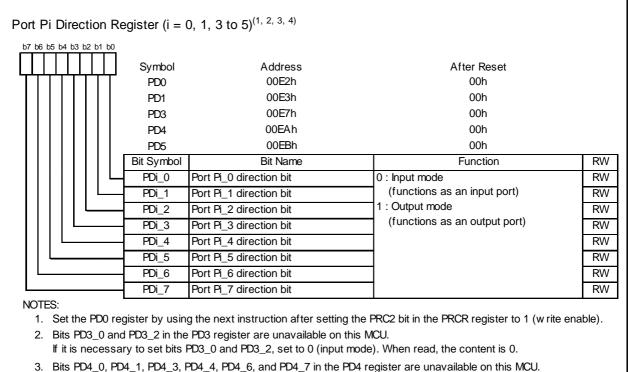
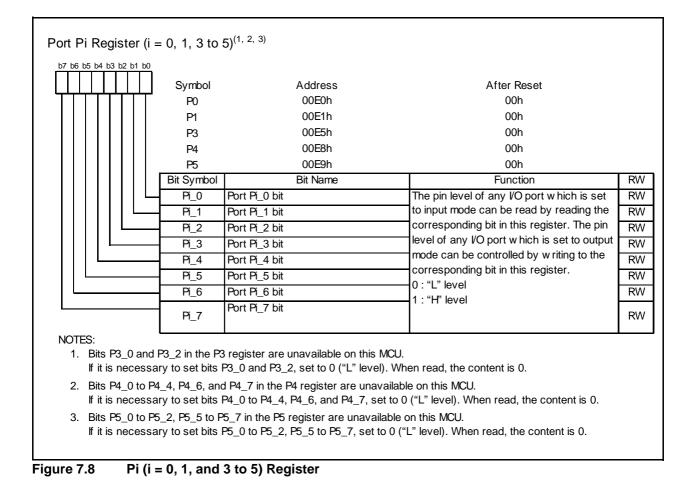



Figure 7.3 Configuration of Programmable I/O Ports (3)


Figure 7.5 Configuration of Programmable I/O Ports (5)

- Bits PD4_0, PD4_1, PD4_3, PD4_4, PD4_6, and PD4_7 in the PD4 register are unavailable on this MCU.
 If it is necessary to set bits D4_0, PD4_1, PD4_3, PD4_4, PD4_6, and PD4_7, set to 0 (input mode). When read, the content is 0.
- Bits PD5_0 to PD5_2 and PD5_5 to PD5_7 in the PD5 register are unavailable on this MCU.
 If it is necessary to set bits PD5_0 to PD5_2 and PD5_5 to PD5_7, set to 0 (input mode). When read, the content is 0.

Figure 7.7 PDi (i = 0, 1, and 3 to 5) Register

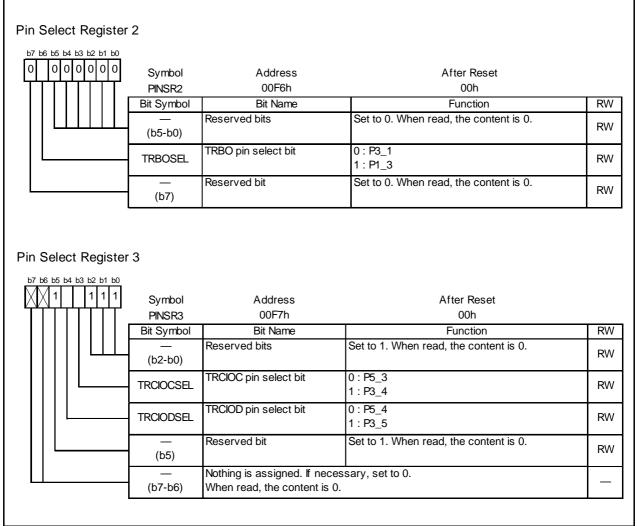


Figure 7.9 Reg

Registers PINSR2 and PINSR3

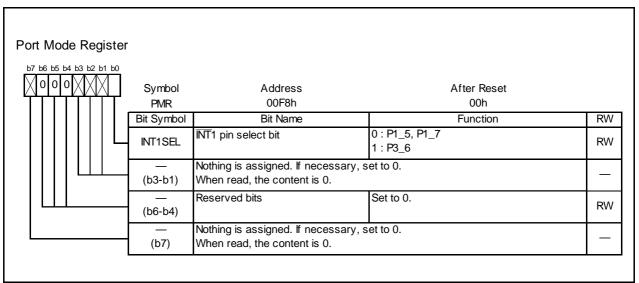


Figure 7.10 PMR Register

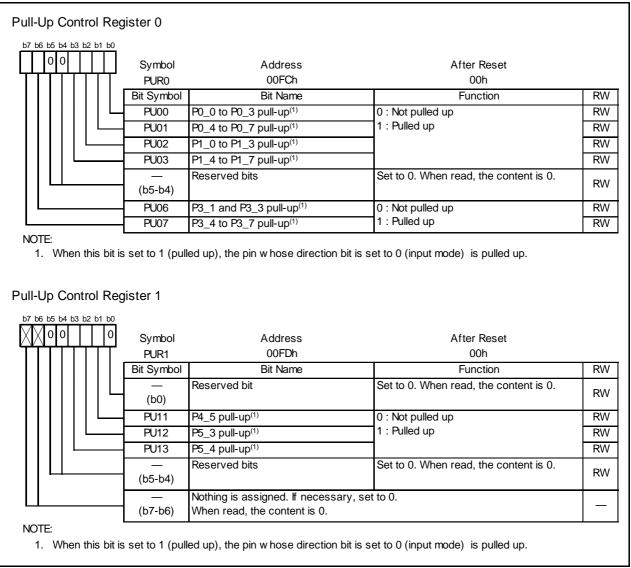
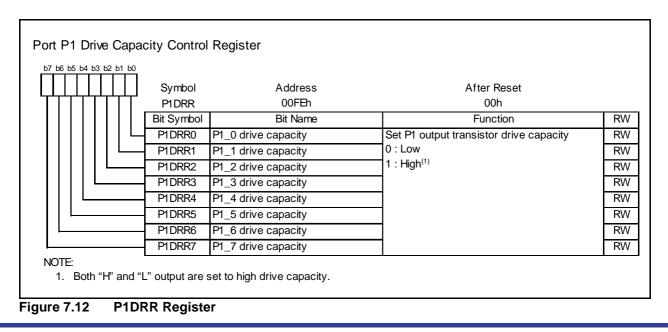



Figure 7.11 Registers PUR0 and PUR1

7.4 Port Setting

Table 7.4 to Table 7.39 list the port setting.

Table 7.4 Port P0_0/AN7

Register	PD0		ADC	ON0		Function	
Bit	PD0_0	CH2	CH1	CH0	ADGSEL0	Function	
Catting	0		Other the	an 1110b		Input port ⁽¹⁾	
Setting value	1		Other the	an 1110b		Output port	
talde	0 1 1 1		1	0	A/D converter input (AN7)		

NOTE:

1. Pulled up by setting the PU00 bit in the PUR0 register to 1.

Table 7.5 Port P0_1/AN6

Register	PD0		ADC	ON0		Function
Bit	PD0_1	CH2	CH1	CH0	ADGSEL0	Function
Sotting	0	Х	Х	Х	Х	Input port ⁽¹⁾
Setting value	1	Х	Х	Х	Х	Output port
Value	0		1	0	0	A/D converter input (AN6)

X: 0 or 1 NOTE:

1. Pulled up by setting the PU00 bit in the PUR0 register to 1.

Table 7.6Port P0_2/AN5/ACMP1

Register	PD0		ADC	ON0		ACCR1	Function	
Bit	PD0_2	CH2	CH1	CH0	ADGSEL0	CM1E	Function	
	0	Х	Х	Х	Х	0	Input port ⁽¹⁾	
Setting	1	Х	Х	Х	Х	0	Output port	
value	0	1	0	1	0	0	A/D converter input (AN5)	
	0	Х	Х	Х	Х	1	ACMP1 input	

X: 0 or 1

NOTE:

1. Pulled up by setting the PU00 bit in the PUR0 register to 1.

Table 7.7 Port P0_3/AN4/AVREF1

Register	PD0		ADC	ON0		ACCR1		Function	
Bit	PD0_3	CH2	CH1	CH0	ADGSEL0	CM1E	VR1SEL	Function	
	0	Х	Х	Х	Х	0	Х	Input port ⁽¹⁾	
Cotting	1	Х	Х	Х	Х	0	Х	Output port	
Setting value	0	0 1	0	0	0	0 0	Х	A/D converter input (AN4)	
Value	0	Ĩ	0	0	0	1	1	A/D converter input (Aiv4)	
	0	Х	Х	Х	Х	1	0	AVREF1 input	

X: 0 or 1 NOTE:

1. Pulled up by setting the PU00 bit in the PUR0 register to 1.

Register	PD0	TRECR1		ADC	ON0	ACCR0	Function		
Bit	PD0_4	TOENA	CH2	CH1	CH0	ADGSEL0	CM0E	FUNCTION	
	0	0	Х	Х	Х	Х	0	Input port ⁽¹⁾	
Cotting	1	0	Х	Х	Х	Х	0	Output port	
Setting value	0	0	0	1	1	0	0	A/D converter input (AN3)	
Value	Х	1	Х	Х	Х	Х	0	TREO output	
	0	0	Х	Х	Х	Х	1	ACMP0 input	

Table 7.8Port P0_4/AN3/TREO/ACMP0

X: 0 or 1

NOTE:

1. Pulled up by setting the PU01 bit in the PUR0 register to 1.

Table 7.9 Port P0_5/AN2/AVREF0

Register	PD0		ADC	ON0		AC	CR0	Function	
Bit	PD0_5	CH2	CH1	CH0	ADGSEL0	CM0E	VR0SEL	FUNCTION	
	0	Х	Х	Х	Х	0	Х	Input port(1)	
	0	Х	Х	Х	Х	0	Х	Input port ⁽¹⁾	
Setting	1	Х	Х	Х	Х	0	Х	Output port	
value	0	0	1	0	0	0	Х	A/D converter input (AN2)	
						1	1	A/D convener input (ANZ)	
	0	Х	Х	Х	Х	1	0	AVREF0 input	

X: 0 or 1 NOTE:

1. Pulled up by setting the PU01 bit in the PUR0 register to 1.

Table 7.10 Port P0_6/AN1/DA0

Register	PD0		ADC	ON0		DACON	ACCR0	Function	
Bit	PD0_6	CH2	CH1	CH0 ADGSEL0		DA0E	VR0SEL		
	0	х	х	х	х	0	Х	Input port(1)	
		^				1	1	Input port ⁽¹⁾	
O attice of	1	х	x	х	х	0	Х	Output port	
Setting value						1	1		
value	0	0 0	0	1	0	0	Х	A/D converter input (AN1)	
	0					1	1	A/D converter input (ANT)	
	0	Х	Х	Х	Х	1	0	DA0 output	

X: 0 or 1 NOTE:

1. Pulled up by setting the PU01 bit in the PUR0 register to 1.

Table 7.11 Port P0_7/AN0/DA1

Register	PD0		ADC	ON0		DACON	ACCR1	Function	
Bit	PD0_7	CH2	CH1	CH0 ADGSEL0		DA1E	VR1SEL		
	0	х	x	х	х	0	X lagut part(1)	Input port ⁽¹⁾	
	0	^				1	1		
Catting	1	1 X	х	х	x	0	Х	Output port	
Setting value						1	1		
Value	0	0 0	0	0	0	0	Х	A/D converter input (AN0)	
	0		0			1	1	A/D converter input (Aivo)	
	0	Х	Х	Х	Х	1	0	DA1 output	

X: 0 or 1 NOTE:

1. Pulled up by setting the PU01 bit in the PUR0 register to 1.

Register	PD1	KIEN		ADC	ON0		Function	
Bit	PD1_0	KI0EN	CH2	CH1	CH0	ADGSEL0	Function	
	0	0	Х	Х	Х	Х	Input port ⁽¹⁾	
Setting	1	0	Х	Х	Х	Х	Output port	
value	0	1	Х	Х	Х	Х	KI0 input ⁽¹⁾	
	0	0	1	0	0	1	A/D converter input (AN8)	

Table 7.12 Port P1_0/KI0/AN8

X: 0 or 1 NOTE:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

Table 7.13 Port P1_1/KI1/AN9/TRCIOA/TRCTRG

Register	PD1	KIEN	Timer RC Setting	ADCON0)	Function	
Bit	PD1_1	KI1EN	-	CH2	CH1	CH0	ADGSEL0	Function	
	0	0	Other than TRCIOA usage conditions	Х	Х	Х	Х	Input port ⁽¹⁾	
	1	0	Other than TRCIOA usage conditions	Х	Х	Х	Х	Output port	
	0	0	Other than TRCIOA usage conditions	1	0	1	1	A/D converter input (AN9)	
Setting	0	1	Other than TRCIOA usage conditions	Х	Х	Х	Х	KI1 input ⁽¹⁾	
value	х	0	Refer to Table 7.14 TRCIOA Pin Setting	Х	х	х	х	TRCIOA output	
	0	0	Refer to Table 7.14 TRCIOA Pin Setting	Х	х	х	Х	TRCIOA input ⁽¹⁾	

X: 0 or 1 NOTE:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

Table 7.14 TRCIOA Pin Setting

Register	TRCOER	TRCMR	TRCIOR0			TRC	CR2	Function	
Bit	EA	PWM2	IOA2	IOA1	IOA0	TCEG1	TCEG2	Function	
	0	1	0	0	1	Х	Х	Timer waveform output	
	0	, ,	0	1	Х	Х	Х	(output compare function)	
Catting	0	1	1	х	х	Х	Х	Timer mode (input capture function)	
Setting value	1		I	^		Х	Х	Timer mode (input capture function)	
value	0	0 V	х	х	х	0	1		
	1	1 0		~	~	1	Х	PWM2 mode TRCTRG input	
			Oth	ner than abo	ove			Other than TRCIOA usage conditions	

X: 0 or 1

Register	PD1	KIEN	Timer RC Setting		A	DCON)	Function
Bit	PD1_2	KI2EN	-	CH2	CH1	CH0	ADGSEL0	FUNCTION
	0	0	Other than TRCIOB usage conditions	Х	Х	Х	Х	Input port ⁽¹⁾
	1	0	Other than TRCIOB usage conditions	Х	Х	Х	Х	Output port
	0 0	0	Other than TRCIOB usage conditions	1	1	0	1	A/D converter input (AN10)
Setting	0	1	Other than TRCIOB usage conditions	Х	Х	Х	Х	KI2 input ⁽¹⁾
value	х	0	Refer to Table 7.16 TRCIOB Pin Setting	х	х	х	х	TRCIOB output
	0	0	Refer to Table 7.16 TRCIOB Pin Setting	х	х	х	Х	TRCIOB input ⁽¹⁾

Table 7.15 Port P1_2/KI2/AN10/TRCIOB

X: 0 or 1

NOTE:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

Table 7.16 TRCIOB Pin Setting

Register	TRCOER TRCMR		MR		TRCIOR0		Function	
Bit	EB	PWM2	PWMB	IOB2	IOB1	IOB0	Function	
	0	0	Х	Х	Х	Х	PWM2 mode waveform output	
	0	1	1	Х	Х	Х	PWM mode waveform output	
0	0	1	0	0	0	1	Timer waveform output (output compare	
Setting value	0	I		0	1	Х	function)	
Value	0	1	0	1	х	х	Timer mode (input capture function)	
	1	I	0	I	^		Timer mode (input capture function)	
			Other that	Other than TRCIOB usage conditions				

X: 0 or 1

Table 7.17 Port P1_3/KI3/AN11/(TRBO)

Register	PD1	KIEN	Timer RB Setting		A	DCON0		Function
Bit	PD1_3	KI3EN	-	CH2	CH1	CH0	ADGSEL0	FUNCTION
	0	0	Other than TRBO usage conditions	Х	Х	Х	Х	Input port ⁽¹⁾
	1	0	Other than TRBO usage conditions	Х	Х	Х	Х	Output port
Setting	0	0	Other than TRBO usage conditions	1	1	1	1	A/D converter input (AN11)
value	0	1	Other than TRBO usage conditions	Х	Х	Х	Х	KI3 input
	Х	0	Refer to Table 7.18 TRBO Pin Setting	Х	х	Х	х	TRBO output

X: 0 or 1

NOTE:

1. Pulled up by setting the PU02 bit in the PUR0 register to 1.

Table 7.18 TRBO Pin Setting

Register	PINSR2	TRBIOC	TRBMR		Function	
Bit	TRBOSEL	TOCNT ⁽¹⁾	TMOD1	TMOD0	- Function	
	1	0	0	1	Programmable waveform generation mode	
	1	0	1	0	Programmable one-shot generation mode	
Setting	1	0	1	1	Programmable wait one-shot generation mode	
value	1	1	0	1	P1_3 output port	
		Other that	an above	Other than TRBO usage conditions		

NOTE:

1. Set the TOCNT bit in the TRBIOC register to 0 in modes except for programmable waveform generation mode.

Table 7.19 Port P1_4/TXD0

Register	PD1		U0MR		Function
Bit	PD1_4	SMD2	SMD1	SMD0	Function
	0	0	0	0	Input port ⁽¹⁾
	1	0	0	0	Output port
Setting value		0	0	1	
value	х	1	0	0	TXD0 output ⁽²⁾
	A	1	0	1	
		1	1	0	

X: 0 or 1 NOTES:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

2. N-channel open drain output by setting the NCH bit in the U0C0 register to 1.

Register	PD1	TRA	loc		TRAMR		INTEN	Function	
Bit	PD1_5	TIOSEL	TOPCR ⁽³⁾	TMOD2	TMOD1	TMOD0	INT1EN	Function	
		0	Х	Х	Х	Х	Х		
	0	1	1	0	0	1	0	Input port ⁽¹⁾	
	1	1	0	0	0	0	0	-	
	1	0	Х	Х	Х	Х	Х	Output port	
		1	0	0	0	0	Х		
Setting		0	Х	Х	Х	Х	Х	RXD0 input ⁽¹⁾	
value		1 0			her than 00	1b	0		
	0	1	0	Other than 000b, 001b			0	TRAIO input ⁽¹⁾	
	0	1	0	0	0	0	1		
		1	1	0	0	1	1	INT1 ⁽²⁾	
		1	0	Other than 000b, 001b			1	TRAIO input/INT1 ^(1, 2)	
	Х	1	0	0	0	1	Х	TRAIO pulse output	

Table 7.20 Port P1_5/RXD0/(TRAIO)/(INT1)

X: 0 or 1 NOTES:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

Set the INT1SEL bit in the PMR register to 0 (P1_5, P1_7).

Set the TOPCR bit in the TRAIOC register to 0 in modes except for pulse output mode.

Table 7.21Port P1_6/CLK0

Register	PD1		U0	MR	Function			
Bit	PD1_6	CKDIR	SMD2	SMD1	SMD0	Function		
	0	Х	Х	Х	Х	Input port ⁽¹⁾		
Setting	1	Х	Other than 001b			Output port		
value	Х	0	0	0	1	CLK0 output		
	0	1	Х	Х	Х	CLK0 input ⁽¹⁾		

X: 0 or 1

NOTE:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

Port P1_7/TRAIO/INT1 Table 7.22

Register	PD1	TR	AIOC	TRAMR			INTEN	Function	
Bit	PD1_7	TIOSEL	TOPCR ⁽³⁾	TMOD2	TMOD1	TMOD0	INT1EN	Function	
		1	Х	Х	Х	Х	Х		
	0	0	1	0	0	1	0	Input port ⁽¹⁾	
		0	0	0	0	0	0	1	
	1	1	Х	Х	Х	Х	Х	Output port	
Setting		0	0	0	0	0	Х		
value		0	0	Other than 000b, 001b			0	TRAIO input ⁽¹⁾	
	0	0	0	0	0	0	1	INT1(2)	
	0	0	1	0	0	1	1		
		0	0	Other	Other than 000b, 001b			TRAIO input/INT1 ^(1, 2)	
	Х	0	0	0	0	1	Х	TRAIO pulse output	

X: 0 or 1 NOTES:

1. Pulled up by setting the PU03 bit in the PUR0 register to 1.

2. Set the INT1SEL bit in the PMR register to 0 (P1_5, P1_7).

3. Set the TOPCR bit in the TRAIOC register to 0 in modes except for pulse output mode.

Register	PD3	Timer RB Setting	Function
Bit	PD3_1	I	T diretion
Cotting	0	Other than TRBO usage conditions	Input port ⁽¹⁾
Setting value	1	Other than TRBO usage conditions	Output port
value	Х	Refer to Table 7.24 TRBO Pin Setting	TRBO output

X: 0 or 1 NOTE:

1. Pulled up by setting the PU06 bit in the PUR0 register to 1.

Table 7.24 **TRBO Pin Setting**

Register	PINSR2	TRBIOC	TRBMR		Function
Bit	TRBOSEL	TOCNT ⁽¹⁾	TMOD1	TMOD0	Function
	0	0	0	1	Programmable waveform generation mode
0	0	0	1	0	Programmable one-shot generation mode
Setting value	0	0	1	1	Programmable wait one-shot generation mode
value	0 1		1	0	P3_1 output port
		Other that	an above		Other than TRBO usage conditions

NOTE:

1. Set the TOCNT bit in the TRBIOC register to 0 in modes except for programmable waveform generation mode.

Register	PD3		TRCCR1		INTEN	- Function
Bit	PD3_3	TCK2	TCK1	TCK0	INT3EN	
	0	(Other than 101	C	0	Input port ⁽¹⁾
Setting	1	U	Other than 101	D	0	Output port
value	0	(Other than 101	C	1	INT3 input ⁽¹⁾
	0	1	0	1	0	TRCCLK input ⁽¹⁾

Table 7.25 Port P3_3/INT3/TRCCLK

NOTE:

1. Pulled up by setting the PU06 bit in the PUR0 register to 1.

Table 7.26 Port P3_4/(TRCIOC)

Register	PD3	Timer RC setting	Function	
Bit	PD3_4 –		Function	
0		Other than TRCIOC usage conditions	Length and (1)	
	0	Other than TRCIOC usage conditions	- Input port ⁽¹⁾	
Setting	4	Other than TRCIOC usage conditions	Output port	
value	I	Other than TRCIOC usage conditions		
	Х	Refer to Table 7.27 TRCIOC Pin Setting	TRCIOC output	
	0	Refer to Table 7.27 TRCIOC Pin Setting	TRCIOC input ⁽¹⁾	

X: 0 or 1

NOTE:

1. Pulled up by setting the PU07 bit in the PUR0 register to 1.

Table 7.27 TRCIOC Pin Setting

Register	PINSR3	TRCOER	TRCMR		TRCIOR1			Function
Bit	TRCIOCSEL	EC	PWM2	PWMC	IOC2	IOC1	IOC0	Function
	1	0	1	1	Х	Х	Х	PWM mode waveform output
	1	0	1	0	0	0	1	Timer waveform output (output compare
Setting	1	0			0	1	Х	function)
value	1	0	1	0	1	х	хх	Timer mode (input capture function)
	1	1	1	0	I	~	^	
	Other than above							Other than TRCIOC usage conditions

X: 0 or 1

Table 7.28	Port P3	_5/(TRCIOD)
------------	---------	-------------

Register	PD3	Timer RC setting	Function	
Bit	PD3_5	I		
	0	Other than TRCIOD usage conditions	Input port ⁽¹⁾	
Setting	1	Other than TRCIOD usage conditions	Output port	
value	Х	Refer to Table 7.29 TRCIOD Pin Setting	TRCIOD output	
-	0	Refer to Table 7.29 TRCIOD Pin Setting	TRCIOD input ⁽¹⁾	

X: 0 or 1 NOTE:

1. Pulled up by setting the PU07 bit in the PUR0 register to 1.

Table 7.29 **TRCIOD Pin Setting**

Register	PINSR3	TRCOER	TRCMR		TRCIOR1			Function
Bit	TRCIODSEL	EC	PWM2	PWMD	IOD2	IOD1	IOD0	Function
	1	0	1	1	Х	Х	Х	PWM mode waveform output
	1	0	1	0 -	0	0	1	Timer waveform output (output
Setting	1	0			0	1	Х	compare function)
value	1	0	1	0	1	х	x x	Timer mode (input capture function)
	1	1	I	0	I	~	^	
		Other	than above	;			Other than TRCIOD usage conditions	

X: 0 or 1

Port P3_6/(INT1) Table 7.30

Register	PD3	INTEN	Function	
Bit	PD3_6	INT1EN	Function	
	0	0	Input port ⁽¹⁾	
Setting value	1	0	Output port	
value	0	1	INT1 input ^(1, 2)	

NOTES:

Pulled up by setting the PU07 bit in the PUR0 register to 1.
 Set the INT1SEL bit in the PMR register to 1 (P3_6).

Table 7.31 Port P3_7/TRAO

Register	PD3	TRAMR	Function
Bit	PD3_7	TOENA	Function
Cotting	0	0	Input port ⁽¹⁾
Setting value	1	0	Output port
value	Х	1	TRAO output

X: 0 or 1 NOTE:

1. Pulled up by setting the PU07 bit in the PUR0 register to 1.

Table 7.32 Port P4_2/VREF

Register	ADCON1	Function			
Bit	VCUT	Function			
Setting	0	Input port			
value	1	Input port/VREF input			

Table 7.33 Port P4_5/INT0

Register	PD4	INTEN	Function
Bit	PD4_5	INTOEN	Function
0	0	0	Input port ⁽¹⁾
Setting value	1	0	Output port
value	0	1	INT0 input ⁽¹⁾

NOTE:

1. Pulled up by setting the PU11 bit in the PUR1 register to 1.

Table 7.34 Port P4_6/XIN

Register	CM0		CM1		Circuit spe	ecifications		
Bit	CM05	CM13	CM11	CM10	Oscillation buffer	Feedback resistor	Function	
	1	0	Х	0	OFF	-	Input port	
			0		ON	ON	XIN clock oscillation (on-chip feedback resistor enabled)	
	0	0	1	0	ON	OFF	XIN clock oscillation (on-chip feedback resistor disabled)	
Setting			0		OFF	ON	External clock input	
value			0			OFF	ON	XIN clock oscillation stop (on-chip feedback resistor enabled)
	1		1		OFF	OFF	XIN clock oscillation stop (on-chip feedback resistor disabled)	
			1	1	OFF	OFF	XIN clock oscillation stop (stop mode)	

X: 0 or 1

Table 7.35 Port P4_7/XOUT

Register	CM0		CM1	CM1		ecifications		
Bit	CM05	CM13	CM11	CM10	Oscillation buffer	Feedback resistor	Function	
	1	0	Х	0	OFF	-	Input port	
		0	0		ON	ON	XIN clock oscillation (on-chip feedback resistor enabled)	
	0		1	0	ON	OFF	XIN clock oscillation (on-chip feedback resistor disabled)	
Setting value			0		OFF	ON	External clock input	
value 1	1		0		OFF	ON	XIN clock oscillation stop (on-chip feedback resistor enabled)	
	I		1		OFF	OFF	XIN clock oscillation stop (on-chip feedback resistor disabled)	
			1	1	OFF	OFF	XOUT pulled up	

X: 0 or 1

Register	PD5	Timer RC setting	ACCR0	Function	
Bit	PD5_3	-	CM0OE	Function	
	0	Other than TRCIOC usage conditions	0	Input port ⁽¹⁾	
Catting	1	Other than TRCIOC usage conditions	0	Output port	
Setting value	Х	Refer to Table 7.37 TRCIOC Pin Setting	0	TRCIOC output	
value	0	Refer to Table 7.37 TRCIOC Pin Setting	0	TRCIOC input ⁽¹⁾	
	Х	Other than TRCIOC usage conditions	1	ACOUT0 output	

Table 7.36Port P5_3/TRCIOC/ACOUT0

X: 0 or 1

NOTE:

1. Pulled up by setting the PU12 bit in the PUR1 register to 1.

Table 7.37 TRCIOC Pin Setting

Register	PINSR3	TRCOER	TRC	MR	TRCIOR1			Function	
Bit	TRCIOCSEL	EC	PWM2	PWMC	IOC2	IOC1	IOC0	Function	
	0	0	1	1	Х	Х	Х	PWM mode waveform output	
	0	0	0 1	1 0	0	0	1	Timer waveform output (output	
Setting	0	0			0	1	Х	compare function)	
value	0	0	4	0	4	x	х	Timer mode (input capture function)	
	0	1	I	0	1		^		
			Other	than above	Э			Other than TRCIOC usage conditions	

X: 0 or 1

Table 7.38 Port P5_4/TRCIOD/ACOUT1

Register	PD5	Timer RC setting	ACCR1	Function	
Bit	PD5_4 –		CM10E	Function	
0		Other than TRCIOD usage conditions	0	Input port ⁽¹⁾	
Catting	1	Other than TRCIOD usage conditions	0	Output port	
Setting value	Х	Refer to Table 7.39 TRCIOD Pin Setting	0	TRCIOD output	
	0	Refer to Table 7.39 TRCIOD Pin Setting	0	TRCIOD input ⁽¹⁾	
	Х	Other than TRCIOD usage conditions	1	ACOUT1 output	

X: 0 or 1

NOTE:

1. Pulled up by setting the PU13 bit in the PUR1 register to 1.

Table 7.39 TRCIOD Pin Setting

Register	PINSR3	TRCOER	TRC	CMR	TRCIOR1			Function	
Bit	TRCIODSEL	ED	PWM2	PWMD	IOD2	IOD1	IOD0	runcion	
	0	0	1	1	Х	Х	Х	PWM mode waveform output	
	0	0	1	0	0	0	1	Timer waveform output (output	
Setting	0	0			0	1	Х	compare function)	
value	0	0	4	0	1	х	х	Timer mode (input capture function)	
	0	1	I			^			
			Other	than above	Э			Other than TRCIOD usage conditions	

X: 0 or 1

7.5 Unassigned Pin Handling

Table 7.40 lists Unassigned Pin Handling.

Table 7.40	Unassigned Pin Handling
------------	-------------------------

Pin Name	Connection
Ports P0, P1, P3_1, P3_3 to P3_7,	 After setting to input mode, connect each pin to VSS via a resistor
P4_3 to P4_5, P5_3, P5_4	(pull-down) or connect each pin to VCC via a resistor (pull-up). ⁽²⁾
	 After setting to output mode, leave these pins open.^(1, 2)
Ports P4_6, P4_7	Connect to VCC via a pull-up resistor ⁽²⁾
Port P4_2, VREF	Connect to VCC
RESET (3)	Connect to VCC via a pull-up resistor ⁽²⁾

NOTES:

 If these ports are set to output mode and left open, they remain in input mode until they are switched to output mode by a program. The voltage level of these pins may be undefined and the power current may increase while the ports remain in input mode.

The content of the direction registers may change due to noise or program runaway caused by noise. In order to enhance program reliability, the program should periodically repeat the setting of the direction registers.

- 2. Connect these unassigned pins to the MCU using the shortest wire length (2 cm or less) possible.
- 3. When the power-on reset function is in use.

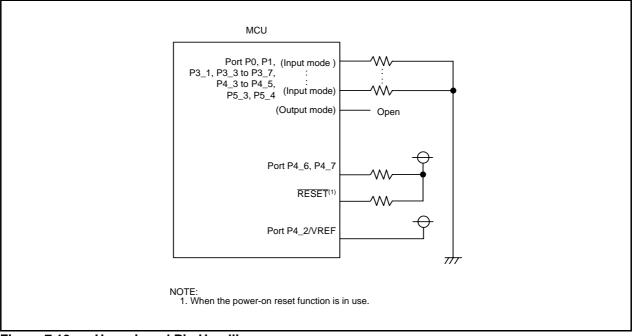


Figure 7.13 Unassigned Pin Handling

8. Processor Mode

8.1 Processor Modes

Single-chip mode can be selected as the processor mode.

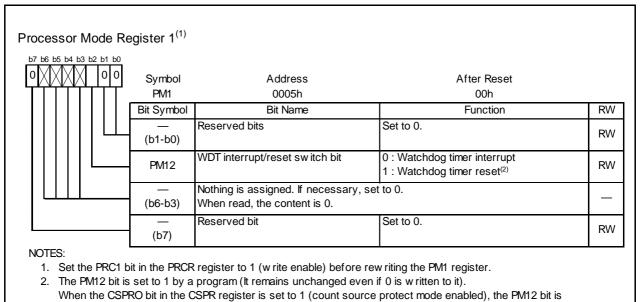

Table 8.1 lists Features of Processor Mode. Figure 8.1 shows the PM0 Register and Figure 8.2 shows the PM1 Register.

Table 8.1 Features of Processor Mode

Processor Mode	Accessible Areas	Pins Assignable as I/O Port Pins
Single-chip mode	SFR, internal RAM, internal ROM	All pins are I/O ports or peripheral
		function I/O pins

	b4 b3 b2 b1 b0	egister 0 ⁽¹⁾			
	000	Symbol	Address	After Reset	
TTT		PM0	0004h	00h	
		Bit Symbol	Bit Name	Function	RW
		 (b2-b0)	Reserved bits	Set to 0.	RW
		PM03	Softw are reset bit	The MCU is reset w hen this bit is set to 1. When read, the content is 0.	RW
		 (b7-b4)	Nothing is assigned. If necess When read, the content is 0.	sary, set to 0.	_

automatically set to 1.

9. Bus

The bus cycles differ when accessing ROM/RAM, and when accessing SFR.

Table 9.1 lists Bus Cycles by Access Space of the R8C/2E Group and Table 9.2 lists Bus Cycles by Access Space of the R8C/2F Group.

ROM/RAM and SFR are connected to the CPU by an 8-bit bus. When accessing in word (16-bit) units, these areas are accessed twice in 8-bit units.

Table 9.3 lists Access Units and Bus Operations.

Table 9.1 Bus Cycles by Access Space of the R8C/2E Group

Access Area	Bus Cycle	
SFR	2 cycles of CPU clock	
ROM/RAM	1 cycle of CPU clock	

Table 9.2 Bus Cycles by Access Space of the R8C/2F Group

Access Area	Bus Cycle
SFR/Data flash	2 cycles of CPU clock
Program ROM/RAM	1 cycle of CPU clock

Table 9.3 Access Units and Bus Operations

Area	SFR, data flash	ROM (program ROM), RAM	
Even address Byte access	CPU clock		
	Address X Even X	Address X Even X	
	Data X Data X	Data X Data	
Odd address Byte access	CPU clock	CPU clock	
	Address X Odd X	Address X Odd X	
	Data X <u>Data</u> X	Data X Data	
Even address Word access			
	Address X Even X Even+1 X	Address X Even X Even+1 X	
	Data X Data X Data X	Data X Data X Data X	
Odd address Word access		CPU clock	
	Address X Odd X Odd+1 X	Address X Odd X Odd+1 X	
	Data X <u>Data</u> X X <u>Data</u> X	Data X Data X Data X	

However, only following SFRs are connected with the 16-bit bus:

Timer RC: registers TRC, TRCGRA, TRCGRB, TRCGRC, and TRCGRD

Therefore, when accessing in word (16-bit) unit, 16-bit data is accessed at a time. The bus operation is the same as "Area: SFR, data flash, even address byte access" in Table 9.3 Access Units and Bus Operations, and 16-bit data is accessed at a time.

10. Clock Generation Circuit

The clock generation circuit has:

- XIN clock oscillation circuit
- · Low-speed on-chip oscillator
- High-speed on-chip oscillator

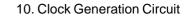

Table 10.1 lists Specifications of Clock Generation Circuit. Figure 10.1 shows a Clock Generation Circuit. Figures 10.2 to 10.7 show clock associated registers.

Table 10.1	Specifications of Clock Generation Circuit
------------	--

Item	XIN Clock Oscillation Circuit	On-Chip Oscillator			
nem	And Clock Oscillation Circuit	High-Speed On-Chip Oscillator	Low-Speed On-Chip Oscillator		
Applications	 CPU clock source Peripheral function clock source 	 CPU clock source Peripheral function clock source CPU and peripheral function clock sources when XIN clock stops oscillating 	 CPU clock source Peripheral function clock source CPU and peripheral function clock sources when XIN clock stops oscillating 		
Clock frequency	0 to 20 MHz	Approx. 40 MHz ⁽³⁾	Approx. 125 kHz		
Connectable oscillator	Ceramic resonatorCrystal oscillator	_	-		
Oscillator connect pins	XIN, XOUT ⁽¹⁾	_(1)	_(1)		
Oscillation stop, restart function	Usable	Usable	Usable		
Oscillator status after reset	Stop	Stop	Oscillate		
Others	 Externally generated clock can be input⁽²⁾ On-chip feedback resistor RfXIN (connected/ not connected, selectable) 	_	-		

NOTES:

- 1. These pins can be used as P4_6 or P4_7 when using the on-chip oscillator clock as the CPU clock while the XIN clock oscillation circuit is not used.
- 2. Set the CM05 bit in the CM0 register to 1 (XIN clock stopped) and the CM13 bit in the CM1 register to 1 (XIN-XOUT pin) when an external clock is input.
- 3. The clock frequency is automatically set to up to 20 MHz by a divider when using the high-speed on-chip oscillator as the CPU clock source.

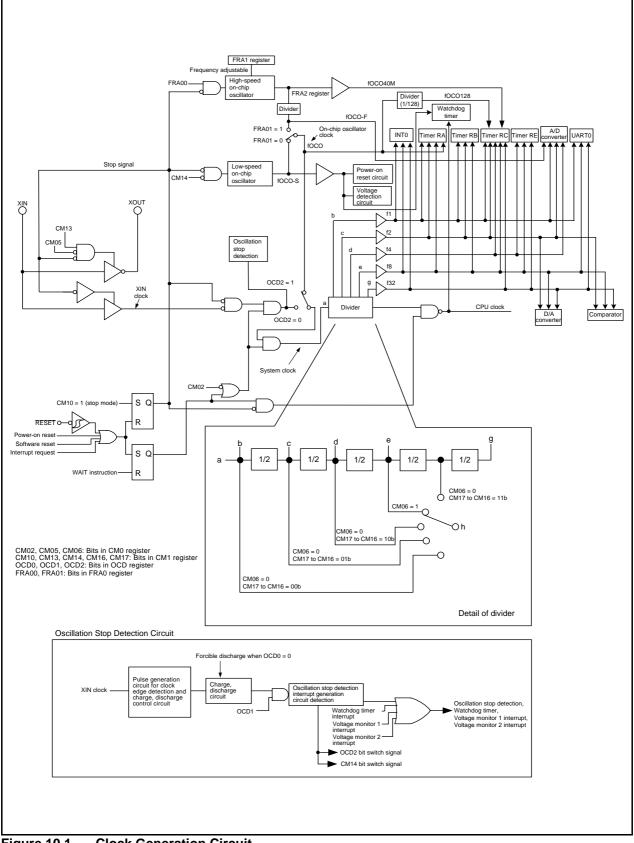


Figure 10.1 **Clock Generation Circuit**

System Clock Cont	rol Registe	r 0 ⁽¹⁾		
b7 b6 b5 b4 b3 b2 b1 b0	Symbol	Address	After Reset	
	CM0	0006h	01101000b	
	Bit Symbol	Bit Name	Function	RW
	 (b1-b0)	Reserved bits	Set to 0.	RW
	CM02	WAIT peripheral function clock stop bit	 0 : Peripheral function clock does not stop in w ait mode 1 : Peripheral function clock stops in w ait mode 	RW
	(b3)	Reserved bit	Set to 1.	RW
	(b4)	Reserved bit	Set to 0.	RW
	CM05	XIN clock (XIN-XOUT) stop bit ^(2, 3)	0 : XIN clock oscillates 1 : XIN clock stops ⁽⁴⁾	RW
	CM06	System clock division select bit $0^{(5)}$	0 : CM16, CM17 enabled 1 : Divide-by-8 mode	RW
	(b7)	Reserved bit	Set to 0.	RW

NOTES:

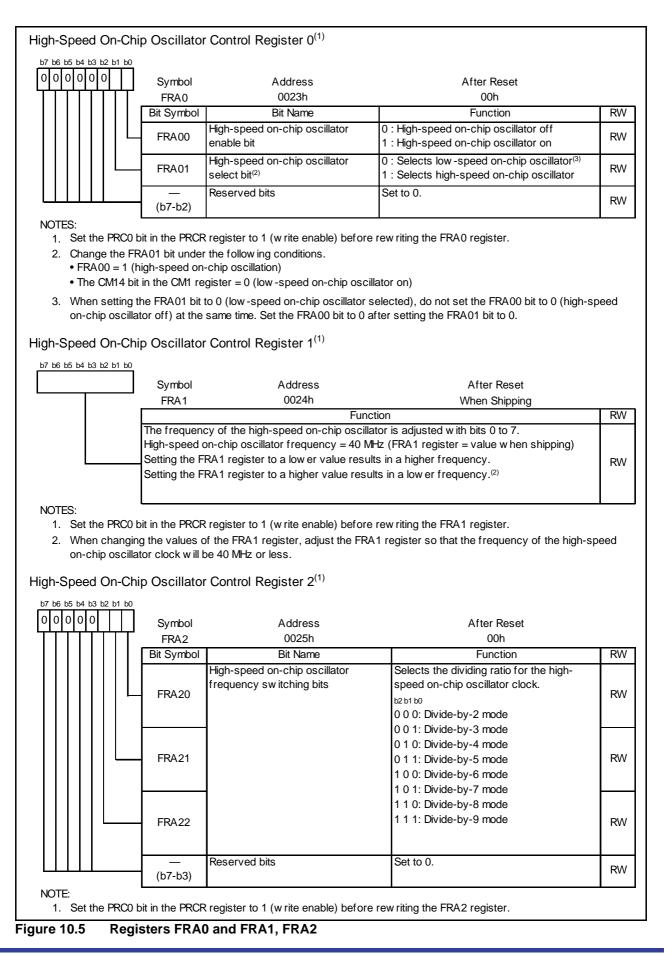
- 1. Set the PRC0 bit in the PRCR register to 1 (write enable) before rewriting the CM0 register.
- 2. P4_6 and P4_7 can be used as input ports when the CM05 bit is set to 1 (XIN clock stops) and the CM13 bit in the CM1 register is set to 0 (P4_6, P4_7).
- 3. The CM05 bit stops the XIN clock when the high-speed on-chip oscillator mode or low -speed on-chip oscillator mode is selected. Do not use this bit to detect whether the XIN clock is stopped. To stop the XIN clock, set the bits in the follow ing order:
 - (a) Set bits OCD1 to OCD0 in the OCD register to 00b.
 - (b) Set the OCD2 bit to 1 (selects on-chip oscillator clock).
- 4. During external clock input, only the clock oscillation buffer is turned off and clock input is acknow ledged.
- 5. When entering stop mode, the CM06 bit is set to 1 (divide-by-8 mode).

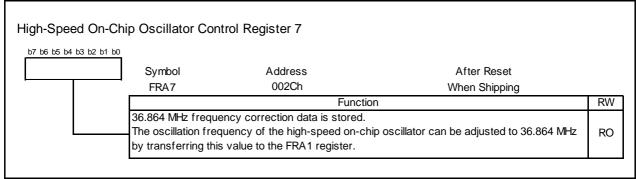
System	Clock Con	trol Registe	r 1 ⁽¹⁾		
b7 b6 b5 b	o4 b3 b2 b1 b0				
		Symbol CM1	Address 0007h	After Reset 00100000b	
		Bit Symbol	Bit Name	Function	RW
	L	CM10	All clock stop control bit ^(2, 3, 4)	0 : Clock operates 1 : Stops all clocks (stop mode)	RW
		CM11	XIN-XOUT on-chip feedback resistor select bit	0 : On-chip feedback resistor enabled 1 : On-chip feedback resistor disabled	RW
	(b2)	Reserved bit	Set to 0.	RW	
		CM13	Port XIN-XOUT switch bit ^(3, 5)	0 : Input ports P4_6, P4_7 1 : XIN-XOUT pin	RW
		CM14	Low -speed on-chip oscillation stop bit ^(4, 6, 7)	0 : Low -speed on-chip oscillator on 1 : Low -speed on-chip oscillator off	RW
		CM15	XIN-XOUT drive capacity select bit ⁽⁸⁾	0 : Low 1 : High	RW
		CM16	- ,	^{b7 b6} 0 0 : No division mode 0 1 : Divide-by-2 mode	RW
		CM17		1 0 : Divide-by-4 mode 1 1 : Divide-by-16 mode	RW

NOTES:

- 1. Set the PRC0 bit in the PRCR register to 1 (write enable) before rewriting the CM1 register.
- 2. If the CM10 bit is set to 1 (stop mode), the on-chip feedback resistor is disabled.
- 3. When the CM10 bit is set to 1 (stop mode) and the CM13 bit is set to 1 (XIN-XOUT pin), the XOUT (P4_7) pin goes "H". When the CM13 bit is set to 0 (input ports, P4_6, P4_7), P4_7 (XOUT) enters input mode.
- 4. In count source protect mode (Refer to **13.2 Count Source Protect Mode Enabled**), the value remains unchanged even if bits CM10 and CM14 are set.
- 5. Once the CM13 bit is set to 1 by a program, it cannot be set to 0.
- 6. When the OCD2 bit is set to 0 (XIN clock selected), the CM14 bit is set to 1 (low -speed on-chip oscillator stopped). When the OCD2 bit is set to 1 (on-chip oscillator clock selected), the CM14 bit is set to 0 (low -speed on-chip oscillator on). It remains unchanged even if 1 is written to it.
- 7. When using the voltage monitor 1 interrupt or voltage monitor 2 interrupt (when using the digital filter), set the CM14 bit to 0 (low -speed on-chip oscillator on).
- 8. When entering stop mode, the CM15 bit is set to 1 (drive capacity high).
- 9. When the CM06 bit is set to 0 (bits CM16, CM17 enabled), bits CM16 to CM17 are enabled.

Figure 10.3 CM1 Register

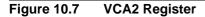

Oscillation Stop De	tection Reg	yister ⁽¹⁾		
0 0 0 0	Symbol	Address	After Reset	
	OCD	000Ch	00000100b	
	Bit Symbol	Bit Name	Function	RW
	OCD0	Oscillation stop detection enable bit ⁽⁷⁾	 0 : Oscillation stop detection function disabled⁽²⁾ 1 : Oscillation stop detection function enabled 	RW
	OCD1	Oscillation stop detection interrupt enable bit	0 : Disabled ⁽²⁾ 1 : Enabled	RW
	OCD2	System clock select bit ⁽⁴⁾	0 : Selects XIN clock ⁽⁷⁾ 1 : Selects on-chip oscillator clock ⁽³⁾	RW
	OCD3	Clock monitor bit ^(5, 6)	0 : XIN clock oscillates 1 : XIN clock stops	RO
	 (b7-b4)	Reserved bits	Set to 0.	RW

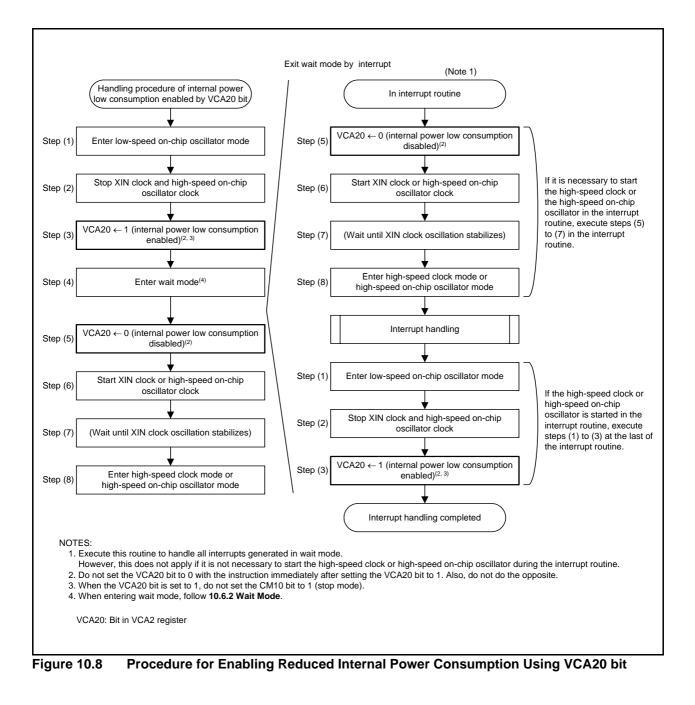

1. Set the PRC0 bit in the PRCR register to 1 (write enable) before rewriting to the OCD register.

2. Set bits OCD1 to OCD0 to 00b before entering stop mode, high-speed on-chip oscillator mode, or low -speed on-chip oscillator mode (XIN clock stops).

- 3. The CM14 bit is set to 0 (low -speed on-chip oscillator on) if the OCD2 bit is set to 1 (on-chip oscillator clock selected).
- 4. The OCD2 bit is automatically set to 1 (on-chip oscillator clock selected) if a XIN clock oscillation stop is detected w hile bits OCD1 to OCD0 are set to 11b. If the OCD3 bit is set to 1 (XIN clock stopped), the OCD2 bit remains unchanged even w hen set to 0 (XIN clock selected).
- 5. The OCD3 bit is enabled when the OCD0 bit is set to 1 (oscillation stop detection function enabled).
- 6. The OCD3 bit remains 0 (XIN clock oscillates) if bits OCD1 to OCD0 are set to 00b.
- 7. Refer to Figure 10.14 Procedure for Switching Clock Source from Low-speed On-Chip Oscillator to XIN Clock for the switching procedure when the XIN clock re-oscillates after detecting an oscillation stop.

Figure 10.4 OCD Register





	0000	Symbol VCA2	Address 0032h	After Reset ⁽⁴⁾ Pow er-on reset or hardw are reset : 00100000b	
		Bit Symbol	Bit Name	Function	RW
	L	VCA20	Internal pow er low consumption enable bit ⁽⁵⁾	0 : Disables low consumption 1 : Enables low consumption	RW
		 (b4-b1)	Reserved bits	Set to 0.	RW
		(b5)	Reserved bit	Set to 1.	RW
		VCA26	Voltage detection 1 enable bit ⁽²⁾	0 : Voltage detection 1 circuit disabled 1 : Voltage detection 1 circuit enabled	RW
		VCA27	Voltage detection 2 enable bit ⁽³⁾	0 : Voltage detection 2 circuit disabled 1 : Voltage detection 2 circuit enabled	RW
NOTES:		A	•		

- To use the voltage monitor 2 interrupt/reset or the VCA13 bit in the VCA1 register, set the VCA27 bit to 1. After the VCA27 bit is set to 1 from 0, the voltage detection circuit waits for td(E-A) to elapse before starting operation.
- 4. Softw are reset, w atchdog timer reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect this register.
- 5. Use the VCA20 bit only when entering to wait mode. To set the VCA20 bit, follow the procedure shown in Figure 10.8 Procedure for Enabling Reduced Internal Power Consumption Using VCA20 bit.

The clocks generated by the clock generation circuits are described below.

10.1 XIN Clock

This clock is supplied by the XIN clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The XIN clock oscillation circuit is configured by connecting a resonator between the XIN and XOUT pins. The XIN clock oscillation circuit includes an on-chip feedback resistor, which is disconnected from the oscillation circuit in stop mode in order to reduce the amount of power consumed by the chip. The XIN clock oscillation circuit may also be configured by feeding an externally generated clock to the XIN pin.

Figure 10.9 shows Examples of XIN Clock Connection Circuit.

In reset and after reset, the XIN clock stops.

The XIN clock starts oscillating when the CM05 bit in the CM0 register is set to 0 (XIN clock oscillates) after setting the CM13 bit in the CM1 register to 1 (XIN- XOUT pin). To use the XIN clock for the CPU clock source, set the OCD2 bit in the OCD register to 0 (select XIN clock) after the XIN clock is oscillating stably.

The power consumption can be reduced by setting the CM05 bit in the CM0 register to 1 (XIN clock stops) if the OCD2 bit is set to 1 (select on-chip oscillator clock).

When an external clock is input to the XIN pin are input, the XIN clock does not stop if the CM05 bit is set to 1. If necessary, use an external circuit to stop the clock.

This MCU has an on-chip feedback resistor and on-chip resistor disable/enable switching is possible by the CM11 bit in the CM1 register.

In stop mode, all clocks including the XIN clock stop. Refer to 10.4 Power Control for details.

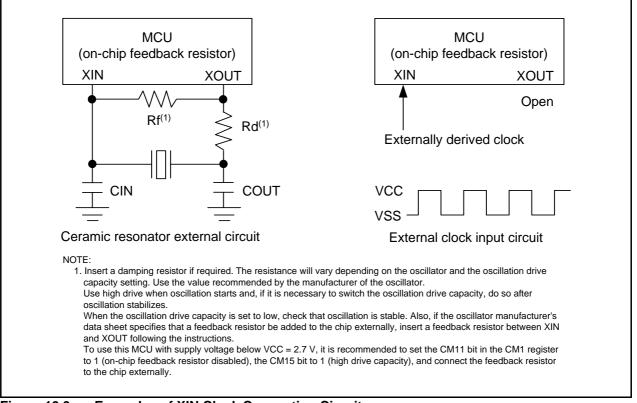


Figure 10.9 Examples of XIN Clock Connection Circuit

10.2 On-Chip Oscillator Clocks

These clocks are supplied by the on-chip oscillators (high-speed on-chip oscillator and a low-speed on-chip oscillator). The on-chip oscillator clock is selected by the FRA01 bit in the FRA0 register.

10.2.1 Low-Speed On-Chip Oscillator Clock

The clock generated by the low-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fOCO, and fOCO-S.

After reset, the on-chip oscillator clock generated by the low-speed on-chip oscillator divided by 8 is selected as the CPU clock.

If the XIN clock stops oscillating when bits OCD1 to OCD0 in the OCD register are set to 11b, the low-speed on-chip oscillator automatically starts operating, supplying the necessary clock for the MCU.

The frequency of the low-speed on-chip oscillator varies depending on the supply voltage and the operating ambient temperature. Application products must be designed with sufficient margin to allow for frequency changes.

10.2.2 High-Speed On-Chip Oscillator Clock

The clock generated by the high-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fOCO, fOCO-F, and fOCO40M.

After reset, the on-chip oscillator clock generated by the high-speed on-chip oscillator stops. Oscillation is started by setting the FRA00 bit in the FRA0 register to 1 (high-speed on-chip oscillator on). The frequency can be adjusted by registers FRA1 and FRA2.

The frequency correction data of 36.864 MHz is stored in the FRA7 register. To set the frequency of the highspeed on-chip oscillator to 36.864 MHz, transfer the correction value in the FRA7 register to the FRA1 register before use.

Since there are differences in the amount of frequency adjustment among the bits in the FRA1 register, make adjustments by changing the settings of individual bits. Adjust the FRA1 register so that the frequency of the high-speed on-chip oscillator clock will be 40 MHz or less.

10.3 CPU Clock and Peripheral Function Clock

There are a CPU clock to operate the CPU and a peripheral function clock to operate the peripheral functions. Refer to **Figure 10.1 Clock Generation Circuit**.

10.3.1 System Clock

The system clock is the clock source for the CPU and peripheral function clocks. Either the XIN clock or the on-chip oscillator clock can be selected.

10.3.2 CPU Clock

The CPU clock is an operating clock for the CPU and watchdog timer.

The system clock can be divided by 1 (no division), 2, 4, 8, or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register to select the value of the division.

After reset, the low-speed on-chip oscillator clock divided by 8 provides the CPU clock.

When entering stop mode from high-speed clock mode, the CM06 bit is set to 1 (divide-by-8 mode).

10.3.3 Peripheral Function Clock (f1, f2, f4, f8, and f32)

The peripheral function clock is the operating clock for the peripheral functions.

The clock fi (i = 1, 2, 4, 8, and 32) is generated by the system clock divided by i. The clock fi is used for timers RA, RB, RC, and RE, the serial interface and the A/D converter.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to 1 (peripheral function clock stops in wait mode), the clock fi stop.

10.3.4 fOCO

fOCO is an operating clock for the peripheral functions.

fOCO runs at the same frequency as the on-chip oscillator clock and can be used as the source for timer RA. When the WAIT instruction is executed, the clocks fOCO does not stop.

10.3.5 fOCO40M

fOCO40M is used as the count source for timer RC. fOCO40M is generated by the high-speed on-chip oscillator and supplied by setting the FRA00 bit to 1.

When the WAIT instruction is executed, the clock fOCO40M does not stop. fOCO40M can be used with supply voltage VCC = 3.0 to 5.5 V.

10.3.6 fOCO-F

fOCO-F is used as the count source for the A/D converter. fOCO-F is generated by the high-speed on-chip oscillator and supplied by setting the FRA00 bit to 1.

When the WAIT instruction is executed, the clock fOCO-F does not stop.

10.3.7 fOCO-S

fOCO-S is an operating clock for the watchdog timer and voltage detection circuit. fOCO-S is supplied by setting the CM14 bit to 0 (low-speed on-chip oscillator on) and uses the clock generated by the low-speed on-chip oscillator. When the WAIT instruction is executed or in count source protect mode of the watchdog timer, fOCO-S does not stop.

10.3.8 fOCO128

fOCO128 is generated by fOCO divided by 128. The clock fOCO128 is used for capture signal of the timer RC's TRCGRA register.

10.4 Power Control

There are three power control modes. All modes other than wait mode and stop mode are referred to as standard operating mode.

10.4.1 Standard Operating Mode

Standard operating mode is further separated into four modes.

In standard operating mode, the CPU clock and the peripheral function clock are supplied to operate the CPU and the peripheral function clocks. Power consumption control is enabled by controlling the CPU clock frequency. The higher the CPU clock frequency, the more processing power increases. The lower the CPU clock frequency, the more power consumption decreases. When unnecessary oscillator circuits stop, power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source needs to be oscillating and stable. If the new clock source is the XIN clock, allow sufficient wait time in a program until oscillation is stabilized before exiting.

Modes		OCD Register	CM1 I	Register		CM0 R	egister	FRA0 Register	
	Jues	OCD2	CM17, CM16	CM14	CM13	CM06	CM05	FRA01	FRA00
High-speed	No division	0	00b	_	1	0	0	-	-
clock mode	Divide-by-2	0	01b	-	1	0	0	-	-
	Divide-by-4	0	10b	-	1	0	0	-	-
	Divide-by-8	0	_	-	1	1	0	-	-
	Divide-by-16	0	11b	-	1	0	0	-	-
High-speed	No division	1	00b	-	_	0	-	1	1
on-chip	Divide-by-2	1	01b	-	_	0	-	1	1
oscillator	Divide-by-4	1	10b	-	-	0	-	1	1
mode	Divide-by-8	1	_	-	-	1	-	1	1
	Divide-by-16	1	11b	-	_	0	-	1	1
Low-speed	No division	1	00b	0	-	0	-	0	-
on-chip	Divide-by-2	1	01b	0	-	0	-	0	-
oscillator	Divide-by-4	1	10b	0	-	0	-	0	-
mode	Divide-by-8	1	_	0	-	1	-	0	-
	Divide-by-16	1	11b	0	-	0	-	0	-

Table 10.2 Settings and Modes of Clock Associated Bits

-: can be 0 or 1, no change in outcome

10.4.1.1 High-Speed Clock Mode

The XIN clock divided by 1 (no division), 2, 4, 8, or 16 provides the CPU clock. Set the CM06 bit to 1 (divideby-8 mode) when transiting to high-speed on-chip oscillator mode, low-speed on-chip oscillator mode. If the CM14 bit is set to 0 (low-speed on-chip oscillator on) or the FRA00 bit in the FRA0 register is set to 1 (highspeed on-chip oscillator on), fOCO can be used as timer RA. When the FRA00 bit is set to 1, fOCO40M can be used as timer RC.

When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer and voltage detection circuit.

10.4.1.2 High-Speed On-Chip Oscillator Mode

The high-speed on-chip oscillator is used as the on-chip oscillator clock when the FRA00 bit in the FRA0 register is set to 1 (high-speed on-chip oscillator on) and the FRA01 bit in the FRA0 register is set to 1. The on-chip oscillator divided by 1 (no division), 2, 4, 8, or 16 provides the CPU clock. Set the CM06 bit to 1 (divide-by-8 mode) when transiting to high-speed clock mode. If the FRA00 bit is set to 1, fOCO40M can be used as timer RC.

When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer and voltage detection circuit.

10.4.1.3 Low-Speed On-Chip Oscillator Mode

If the CM14 bit in the CM1 register is set to 0 (low-speed on-chip oscillator on) or the FRA01bit in the FRA0 register is set to 0, the low-speed on-chip oscillator provides the on-chip oscillator clock.

The on-chip oscillator clock divided by 1 (no division), 2, 4, 8 or 16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. Set the CM06 bit to 1 (divide-by-8 mode) when transiting to high-speed clock mode. When the FRA00 bit is set to 1, fOCO40M can be used as timer RC.

When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fOCO-S can be used as the watchdog timer and voltage detection circuit.

In this mode, stopping the XIN clock and high-speed on-chip oscillator, and setting the FMR47 bit in the FMR4 register to 1 (flash memory low consumption current read mode enabled) enables low consumption operation.

To enter wait mode from low-speed on-chip oscillator mode, setting the VCA20 bit in the VCA2 register to 1 (internal power low consumption enabled) enables lower consumption current in wait mode.

When enabling reduced internal power consumption using the VCA20 bit, follow **Figure 10.11 Procedure for Enabling Reduced Internal Power Consumption Using VCA20 bit**.

10.4.2 Wait Mode

Since the CPU clock stops in wait mode, the CPU, which operates using the CPU clock, and the watchdog timer, when count source protection mode is disabled, stop. The XIN clock and on-chip oscillator clock do not stop and the peripheral functions using these clocks continue operating.

10.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the f1, f2, f4, f8, and f32 clocks stop in wait mode. This reduces power consumption.

10.4.2.2 Entering Wait Mode

The MCU enters wait mode when the WAIT instruction is executed.

When the OCD2 bit in the OCD register is set to 1 (on-chip oscillator selected as system clock), set the OCD1 bit in the OCD register to 0 (oscillation stop detection interrupt disabled) before executing the WAIT instruction.

If the MCU enters wait mode while the OCD1 bit is set to 1 (oscillation stop detection interrupt enabled), current consumption is not reduced because the CPU clock does not stop.

10.4.2.3 Pin Status in Wait Mode

The I/O port is the status before wait mode was entered is maintained.

10.4.2.4 Exiting Wait Mode

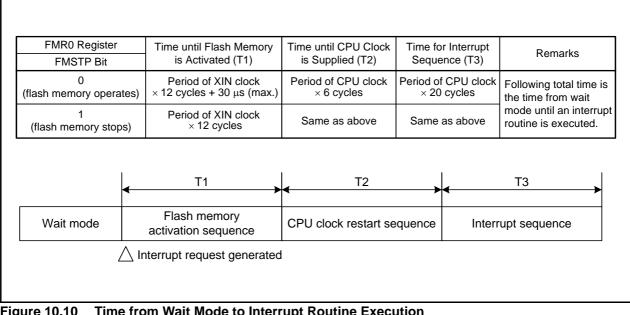
The MCU exits wait mode by a reset or a peripheral function interrupt.

The peripheral function interrupts are affected by the CM02 bit. When the CM02 bit is set to 0 (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the peripheral functions using the peripheral function clock stop operating and the peripheral functions operated by external signals or on-chip oscillator clock can be used to exit wait mode.

Table 10.3 lists Interrupts to Exit Wait Mode and Usage Conditions.

Interrupt	CM02 = 0	CM02 = 1
Serial interface interrupt	Usable when operating with	Usable when operating with external
	internal or external clock	clock
Key input interrupt	Usable	Usable
A/D conversion interrupt	Usable in one-shot mode	(Do not use)
Comparator 0 interrupt	Usable	Can be used if there is no filter
Comparator 1 interrupt	Usable	Can be used if there is no filter
Timer RA interrupt	Usable in all modes	Can be used if there is no filter in
		event counter mode.
		Usable by selecting fOCO as count
		source.
Timer RB interrupt	Usable in all modes	(Do not use)
Timer RC interrupt	Usable in all modes	(Do not use)
Timer RE interrupt	Usable in all modes	(Do not use)
INT interrupt	Usable	Usable (INT0, INT1, INT3 can be used
		if there is no filter.)
Voltage monitor 1 interrupt	Usable	Usable
Voltage monitor 2 interrupt	Usable	Usable
Oscillation stop detection	Usable	(Do not use)
interrupt		

Table 10.3 Interrupts to Exit Wait Mode and Usage Conditions


Figure 10.10 shows Time from Wait Mode to Interrupt Routine Execution.

When using a peripheral function interrupt to exit wait mode, set up the following before executing the WAIT instruction.

- (1) Set the interrupt priority level in bits ILVL2 to ILVL0 in the interrupt control registers of the peripheral function interrupts to be used for exiting wait mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting wait mode to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Operate the peripheral function to be used for exiting wait mode.

When exiting by a peripheral function interrupt, the time (number of cycles) between interrupt request generation and interrupt routine execution is determined by the settings of the FMSTP bit in the FMR0 register, as described in Figure 10.10.

The CPU clock, when exiting wait mode by a peripheral function interrupt, is the same clock as the CPU clock when the WAIT instruction is executed.

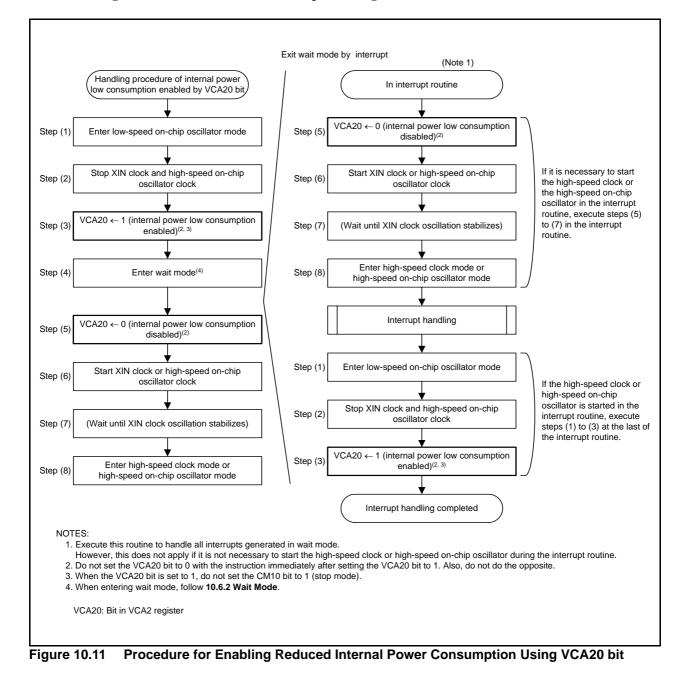


Figure 10.10 Time from Wait Mode to Interrupt Routine Execution

10.4.2.5 Reducing Internal Power Consumption

Internal power consumption can be reduced by using low-speed on-chip oscillator mode. Figure 10.11 shows the Procedure for Enabling Reduced Internal Power Consumption Using VCA20 bit.

When enabling reduced internal power consumption using the VCA20 bit, follow **Figure 10.11 Procedure for Enabling Reduced Internal Power Consumption Using VCA20 bit**.

10.4.3 Stop Mode

Since the oscillator circuits stop in stop mode, the CPU clock and peripheral function clock stop and the CPU and peripheral functions that use these clocks stop operating. The least power required to operate the MCU is in stop mode. If the voltage applied to the VCC pin is VRAM or more, the contents of internal RAM is maintained.

The peripheral functions clocked by external signals continue operating. Table 10.4 lists Interrupts to Exit Stop Mode and Usage Conditions.

Table 10.4	Interrupts to Exit Stop Mode and Usage Conditions
------------	---

Interrupt	Usage Conditions
Key input interrupt	-
INT0, INT1, INT3 interrupt	Can be used if there is no filter
Timer RA interrupt	When there is no filter and external pulse is counted in event counter mode
Serial interface interrupt	When external clock is selected
Voltage monitor 1 interrupt	Usable in digital filter disabled mode (VW1C1 bit in VW1C register is set to 1)
Voltage monitor 2 interrupt	Usable in digital filter disabled mode (VW2C1 bit in VW2C register is set to 1)
Comparator 0 interrupt, Comparator 1 interrupt	Can be used if there is no filter

10.4.3.1 Entering Stop Mode

The MCU enters stop mode when the CM10 bit in the CM1 register is set to 1 (all clocks stop). At the same time, the CM06 bit in the CM0 register is set to 1 (divide-by-8 mode) and the CM15 bit in the CM1 register is set to 1 (XIN clock oscillator circuit drive capacity high).

When using stop mode, set bits OCD1 to OCD0 to 00b before entering stop mode.

10.4.3.2 Pin Status in Stop Mode

The status before wait mode was entered is maintained.

However, when the CM13 bit in the CM1 register is set to 1 (XIN-XOUT pins), the XOUT(P4_7) pin is held "H". When the CM13 bit is set to 0 (input ports P4_6 and P4_7), the P4_7(XOUT pin) is held in input status.

10.4.3.3 Exiting Stop Mode

The MCU exits stop mode by a reset or peripheral function interrupt.

Figure 10.12 shows the Time from Stop Mode to Interrupt Routine Execution.

When using a peripheral function interrupt to exit stop mode, set up the following before setting the CM10 bit to 1.

- (1) Set the interrupt priority level in bits ILVL2 to ILVL0 of the peripheral function interrupts to be used for exiting stop mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting stop mode to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Operates the peripheral function to be used for exiting stop mode.

When exiting by a peripheral function interrupt, the interrupt sequence is executed when an interrupt request is generated and the CPU clock supply is started.

If the clock used immediately before stop mode is a system clock and stop mode is exited by a peripheral function interrupt, the CPU clock becomes the previous system clock divided by 8.

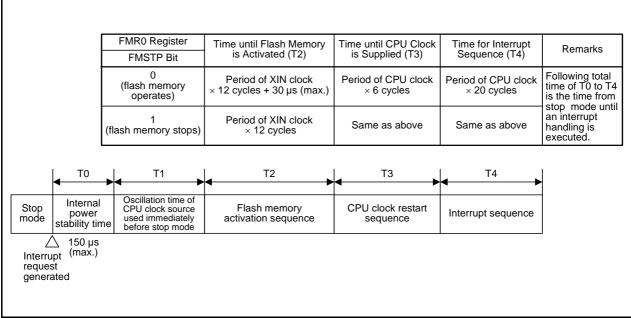


Figure 10.12 Time from Stop Mode to Interrupt Routine Execution

Figure 10.13 shows the State Transitions in Power Control Mode.

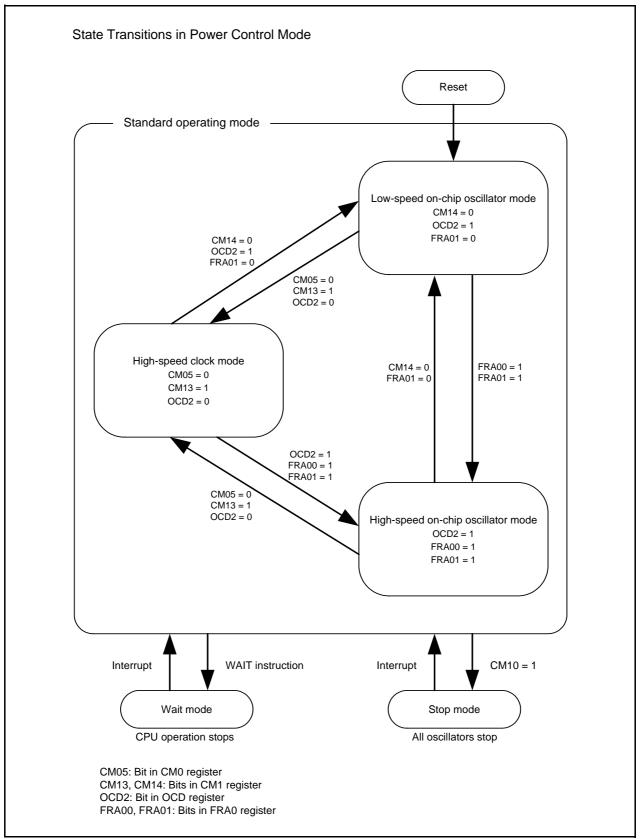


Figure 10.13 State Transitions in Power Control Mode

10.5 Oscillation Stop Detection Function

The oscillation stop detection function detects the stop of the XIN clock oscillating circuit. The oscillation stop detection function can be enabled and disabled by the OCD0 bit in the OCD register. Table 10.5 lists the Specifications of Oscillation Stop Detection Function.

When the XIN clock is the CPU clock source and bits OCD1 to OCD0 are set to 11b, the system is placed in the following state if the XIN clock stops.

- OCD2 bit in OCD register = 1 (on-chip oscillator clock selected)
- OCD3 bit in OCD register = 1 (XIN clock stops)
- CM14 bit in CM1 register = 0 (low-speed on-chip oscillator oscillates)
- Oscillation stop detection interrupt request is generated.

Table 10.5 Specifications of Oscillation Stop Detection Function

Item	Specification
Oscillation stop detection clock and	$f(XIN) \ge 2 MHz$
frequency bandwidth	
Enabled condition for oscillation stop	Set bits OCD1 to OCD0 to 11b
detection function	
Operation at oscillation stop detection	Oscillation stop detection interrupt is generated

10.5.1 How to Use Oscillation Stop Detection Function

• The oscillation stop detection interrupt shares a vector with the voltage monitor 1 interrupt, the voltage monitor 2 interrupt, and the watchdog timer interrupt. When using the oscillation stop detection interrupt and watchdog timer interrupt source needs to be determined.

Table 10.6 lists Determining Interrupt Source for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, and Voltage Monitor 2 Interrupts. Figure 10.15 shows the Example of Determining Interrupt Source for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt.

• When the XIN clock restarts after oscillation stop, switch the XIN clock to the clock source of the CPU clock and peripheral functions by a program.

Figure 10.14 shows the Procedure for Switching Clock Source from Low-Speed On-Chip Oscillator to XIN Clock.

- To enter wait mode while using the oscillation stop detection function, set the CM02 bit to 0 (peripheral function clock does not stop in wait mode).
- Since the oscillation stop detection function is a function for cases where the XIN clock is stopped by an external cause, set bits OCD1 to OCD0 to 00b when the XIN clock stops or is started by a program, (stop mode is selected or the CM05 bit is changed).
- This function cannot be used when the XIN clock frequency is 2 MHz or below. In this case, set bits OCD1 to OCD0 to 00b.
- To use the low-speed on-chip oscillator clock for the CPU clock and clock sources of peripheral functions after detecting the oscillation stop, set the FRA01 bit in the FRA0 register to 0 (low-speed on-chip oscillator selected) and bits OCD1 to OCD0 to 11b.

To use the high-speed on-chip oscillator clock for the CPU clock and clock sources of peripheral functions after detecting the oscillation stop, set the FRA00 bit to 1 (high-speed on-chip oscillator on) and the FRA01 bit to 1 (high-speed on-chip oscillator selected) and then set bits OCD1 to OCD0 to 11b.

Table 10.6	Determining Interrupt Source for Oscillation Stop Detection, Watchdog Timer,
	Voltage Monitor 1, and Voltage Monitor 2 Interrupts

Generated Interrupt Source	Bit Showing Interrupt Cause
Oscillation stop detection	(a) OCD3 bit in OCD register = 1
((a) or (b))	(b) OCD1 to OCD0 bits in OCD register = 11b and OCD2 bit = 1
Watchdog timer	VW2C3 bit in VW2C register = 1
Voltage monitor 1	VW1C2 bit in VW1C register = 1
Voltage monitor 2	VW2C2 bit in VW2C register = 1

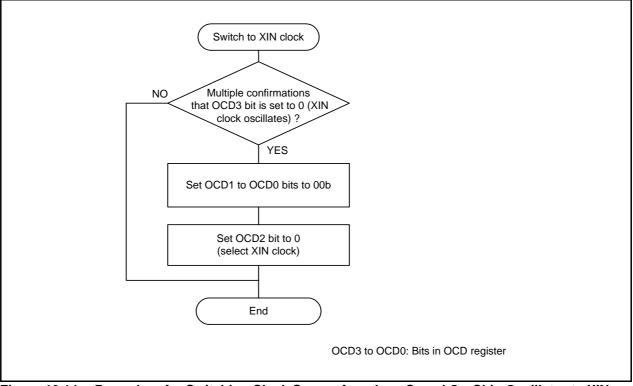


Figure 10.14 Procedure for Switching Clock Source from Low-Speed On-Chip Oscillator to XIN Clock

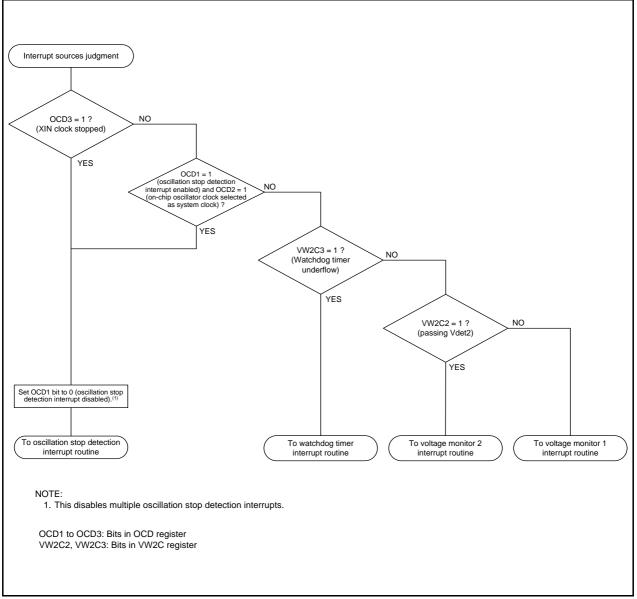


Figure 10.15 Example of Determining Interrupt Source for Oscillation Stop Detection, Watchdog Timer, Voltage Monitor 1, or Voltage Monitor 2 Interrupt

10.6 Notes on Clock Generation Circuit

10.6.1 Stop Mode

When entering stop mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and the CM10 bit in the CM1 register to 1 (stop mode). An instruction queue pre-reads 4 bytes from the instruction which sets the CM10 bit to 1 (stop mode) and the program stops.

Insert at least 4 NOP instructions following the JMP.B instruction after the instruction which sets the CM10 bit to 1.

• Program example to enter stop mode

BCLR	1,FMR0	; CPU rewrite mode disabled
BSET	0,PRCR	; Protect disabled
FSET	Ι	; Enable interrupt
BSET	0,CM1	; Stop mode
JMP.B	LABEL_001	
LABEL_001 :		
NOP		
NOP		
NOP		
NOP		

10.6.2 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the WAIT instruction and the program stops. Insert at least 4 NOP instructions after the WAIT instruction.

• Program example to execute the WAIT instruction

BCLR 1,FMR0 FSET I WAIT NOP NOP NOP NOP ; CPU rewrite mode disabled ; Enable interrupt ; Wait mode

10.6.3 Oscillation Stop Detection Function

Since the oscillation stop detection function cannot be used if the XIN clock frequency is 2 MHz or below, set bits OCD1 to OCD0 to 00b.

10.6.4 Oscillation Circuit Constants

Ask the manufacturer of the oscillator to specify the best oscillation circuit constants for your system. To use this MCU with supply voltage below VCC = 2.7 V, it is recommended to set the CM11 bit in the CM1 register to 1 (on-chip feedback resistor disabled), the CM15 bit to 1 (high drive capacity), and connect the feedback resistor to the chip externally.

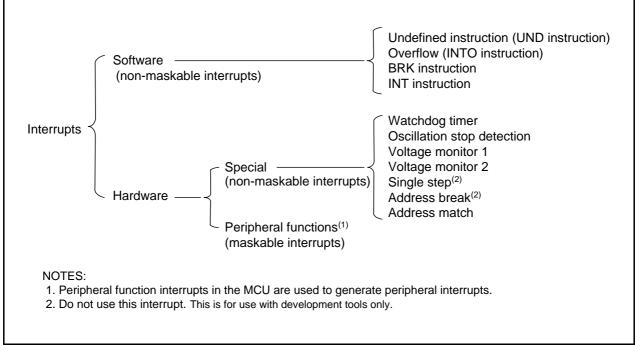
11. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control. Figure 11.1 shows the PRCR Register. The registers protected by the PRCR register are listed below.

- Registers protected by PRC0 bit: Registers CM0, CM1, OCD, FRA0, FRA1, and FRA2
- Registers protected by PRC1 bit: Registers PM0 and PM1
- Registers protected by PRC2 bit: PD0 register
- Registers protected by PRC3 bit: Registers VCA2, VW1C, and VW2C

Protect Register				
	Symbol PRCR	Address 000Ah	After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	PRC0	Protect bit 0	Writing to registers CM0, CM1, OCD, FRA0, FRA1, and FRA2 is enabled. 0 : Disables w riting 1 : Enables w riting	RW
	PRC1	Protect bit 1	Writing to registers PM0 and PM1 is enabled. 0 : Disables w riting 1 : Enables w riting	RW
	PRC2	Protect bit 2	Writing to the PD0 register is enabled. 0 : Disables w riting 1 : Enables w riting ⁽¹⁾	RW
	PRC3	Protect bit 3	Writing to registers VCA2, VW1C, and VW2C is enabled. 0 : Disables w riting 1 : Enables w riting	RW
	(b5-b4)	Reserved bits	Set to 0.	RW
	(b7-b6)	Reserved bits	When read, the content is 0.	RO
NOTE:	(b7-b6)			RO

1. This bit is set to 0 after writing 1 to the PRC2 bit and executing a write to any address. Since the other bits are not set to 0, set them to 0 by a program.


Figure 11.1 **PRCR Register**

12. Interrupts

12.1 Interrupt Overview

12.1.1 Types of Interrupts

Figure 12.1 shows the types of Interrupts.

Maskable Interrupts: The interrupt enable flag (I flag) enables or disables these interrupts. The interrupt priority order can be changed based on the interrupt priority level.
 Non-Maskable Interrupts: The interrupt enable flag (I flag) does not enable or disable these interrupts. The interrupt priority order cannot be changed based on interrupt priority level.

12.1.2 Software Interrupts

A software interrupt is generated when an instruction is executed. Software interrupts are non-maskable.

12.1.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt is generated when the UND instruction is executed.

12.1.2.2 Overflow Interrupt

The overflow interrupt is generated when the O flag is set to 1 (arithmetic operation overflow) and the INTO instruction is executed. Instructions that set the O flag are: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, and SUB.

12.1.2.3 BRK Interrupt

A BRK interrupt is generated when the BRK instruction is executed.

12.1.2.4 INT Instruction Interrupt

An INT instruction interrupt is generated when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 3 to 31 are assigned to the peripheral function interrupt. Therefore, the MCU executes the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt is generated. For software interrupt numbers 0 to 31, the U flag is saved to the stack during instruction execution and the U flag is set to 0 (ISP selected) before the interrupt sequence is executed. The U flag is restored from the stack when returning from the interrupt routine. For software interrupt numbers 32 to 63, the U flag does not change state during instruction execution, and the selected SP is used.

12.1.3 Special Interrupts

Special interrupts are non-maskable.

12.1.3.1 Watchdog Timer Interrupt

The watchdog timer interrupt is generated by the watchdog timer. For details, refer to 13. Watchdog Timer.

12.1.3.2 Oscillation Stop Detection Interrupt

The oscillation stop detection interrupt is generated by the oscillation stop detection function. For details of the oscillation stop detection function, refer to **10. Clock Generation Circuit**.

12.1.3.3 Voltage Monitor 1 Interrupt

The voltage monitor 1 interrupt is generated by the voltage detection circuit. For details of the voltage detection circuit, refer to **6. Voltage Detection Circuit**.

12.1.3.4 Voltage Monitor 2 Interrupt

The voltage monitor 2 interrupt is generated by the voltage detection circuit. For details of the voltage detection circuit, refer to **6. Voltage Detection Circuit**.

12.1.3.5 Single-Step Interrupt, and Address Break Interrupt

Do not use these interrupts. They are for use by development tools only.

12.1.3.6 Address Match Interrupt

The address match interrupt is generated immediately before executing an instruction that is stored at an address indicated by registers RMAD0 to RMAD1 when the AIER0 or AIER1 bit in the AIER register is set to 1 (address match interrupt enable). For details of the address match interrupt, refer to **12.4 Address Match Interrupt**.

12.1.4 Peripheral Function Interrupt

The peripheral function interrupt is generated by the internal peripheral function of the MCU and is a maskable interrupt. Refer to **Table 12.2 Relocatable Vector Tables** for sources of the peripheral function interrupt. For details of peripheral functions, refer to the descriptions of individual peripheral functions.

12.1.5 Interrupts and Interrupt Vectors

There are 4 bytes in each vector. Set the starting address of an interrupt routine in each interrupt vector. When an interrupt request is acknowledged, the CPU branches to the address set in the corresponding interrupt vector. Figure 12.2 shows an Interrupt Vector.

	MSB	LSB
Vector address (L)	Low a	ddress
	Mid ad	ddress
	0000	High address
Vector address (H)	0000	0000

Figure 12.2	Interrupt Vector
-------------	------------------

12.1.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses 0FFDCh to 0FFFFh.

Table 12.1 lists the Fixed Vector Tables. The vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to **20.3 Functions to Prevent Rewriting of Flash Memory**.

Interrupt Source	Vector Addresses Address (L) to (H)	Remarks	Reference
Undefined instruction	0FFDCh to 0FFDFh	Interrupt on UND	R8C/Tiny Series Software
		instruction	Manual
Overflow	0FFE0h to 0FFE3h	Interrupt on INTO	
		instruction	
BRK instruction	0FFE4h to 0FFE7h	If the content of address	
		0FFE7h is FFh,	
		program execution	
		starts from the address	
		shown by the vector in	
		the relocatable vector	
		table.	
Address match	0FFE8h to 0FFEBh		12.4 Address Match
			Interrupt
Single step ⁽¹⁾	0FFECh to 0FFEFh		
Watchdog timer,	0FFF0h to 0FFF3h		13. Watchdog Timer
Oscillation stop detection,			10. Clock Generation Circuit
Voltage monitor 1,			6. Voltage Detection Circuit
Voltage monitor 2			
Address break ⁽¹⁾	0FFF4h to 0FFF7h		
(Reserved)	0FFF8h to 0FFFBh		
Reset	0FFFCh to 0FFFFh		5. Resets

Table 12.1Fixed Vector Tables

NOTE:

1. Do not use these interrupts. They are for use by development tools only.

12.1.5.2 Relocatable Vector Tables

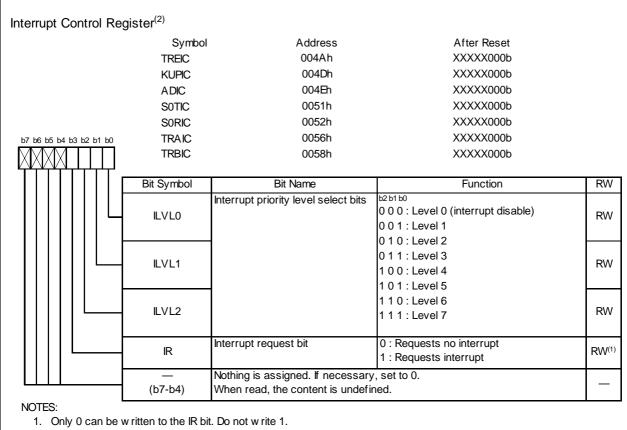
The relocatable vector tables occupy 256 bytes beginning from the starting address set in the INTB register. Table 12.2 lists the Relocatable Vector Tables.

Interrupt Source	Vector Addresses ⁽¹⁾ Address (L) to Address (H)	Software Interrupt Number	Interrupt Control Register	Reference
BRK instruction ⁽²⁾	+0 to +3 (0000h to 0003h)	0	-	R8C/Tiny Series Software Manual
(Reserved)		1 to 2	-	-
(Reserved)		3 to 6	-	-
Timer RC	+28 to +31 (001Ch to 001Fh)	7	TRCIC	14.3 Timer RC
(Reserved)		8 to 9	-	-
Timer RE	+40 to +43 (0028h to 002Bh)	10	TREIC	14.4 Timer RE
(Reserved)		11 to 12	-	-
Key input	+52 to +55 (0034h to 0037h)	13	KUPIC	12.3 Key Input Interrupt
A/D	+56 to +59 (0038h to 003Bh)	14	ADIC	17. A/D Converter
(Reserved)		15 to 16	-	-
UART0 transmit	+68 to +71 (0044h to 0047h)	17	SOTIC	15. Serial Interface
UART0 receive	+72 to +75 (0048h to 004Bh)	18	SORIC	
(Reserved)		19 to 21	-	-
Timer RA	+88 to +91 (0058h to 005Bh)	22	TRAIC	14.1 Timer RA
(Reserved)		23	-	-
Timer RB	+96 to +99 (0060h to 0063h)	24	TRBIC	14.2 Timer RB
INT1	+100 to +103 (0064h to 0067h)	25	INT1IC	12.2 INT Interrupt
INT3	+104 to +107 (0068h to 006Bh)	26	INT3IC	
Comparator 0	+108 to +111 (006Ch to 006Fh)	27	CM0IC	19. Comparator
Comparator 1	+112 to +115 (0070h to 0073h)	28	CM1IC	
INT0	+116 to +119 (0074h to 0077h)	29	INTOIC	12.2 INT Interrupt
(Reserved)		30	-	-
(Reserved)		31	-	-
Software interrupt ⁽²⁾	+128 to +131 (0080h to 0083h) to +252 to +255 (00FCh to 00FFh)	32 to 63	-	R8C/Tiny Series Software Manual

 Table 12.2
 Relocatable Vector Tables

NOTES:

1. These addresses are relative to those in the INTB register.


2. The I flag does not disable these interrupts.

12.1.6 Interrupt Control

The following describes enabling and disabling the maskable interrupts and setting the priority for acknowledgement. The explanation does not apply to nonmaskable interrupts.

Use the I flag in the FLG register, IPL, and bits ILVL2 to ILVL0 in each interrupt control register to enable or disable maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control register.

Figure 12.3 shows the Interrupt Control Register, Figure 12.4 shows Registers TRCIC, CM0IC, and CM1IC and Figure 12.5 shows the INTIIC Register (i=0, 1, 3).

2. Rew rite the interrupt control register when the interrupt request which is applicable for its register is not generated. Refer to **12.6.5 Changing Interrupt Control Register Contents**.

Figure 12.3 Interrupt Control Register

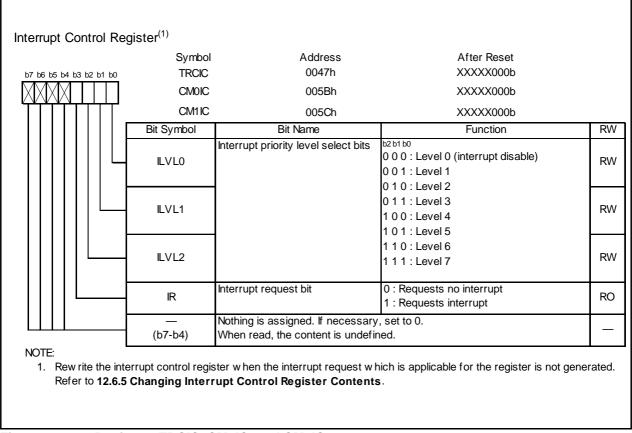
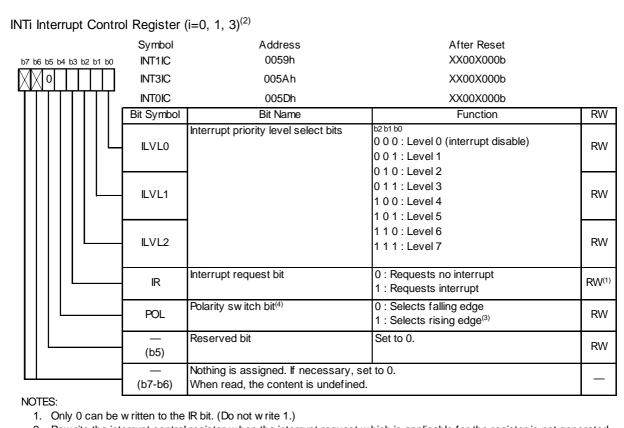



Figure 12.4 Registers TRCIC, CM0IC, and CM1IC

2. Rew rite the interrupt control register when the interrupt request which is applicable for the register is not generated. Refer to **12.6.5 Changing Interrupt Control Register Contents**.

- 3. If the INTIPL bit in the INTEN register is set to 1 (both edges), set the POL bit to 0 (selects falling edge).
- 4. The IR bit may be set to 1 (requests interrupt) when the POL bit is rew ritten. Refer to **12.6.4 Changing Interrupt Sources.**

12.1.6.1 | Flag

The I flag enables or disables maskable interrupts. Setting the I flag to 1 (enabled) enables maskable interrupts. Setting the I flag to 0 (disabled) disables all maskable interrupts.

12.1.6.2 IR Bit

The IR bit is set to 1 (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is acknowledged and the CPU branches to the corresponding interrupt vector, the IR bit is set to 0 (= interrupt not requested).

The IR bit can be set to 0 by a program. Do not write 1 to this bit.

However, the IR bit operations of the timer RC interrupt, comparator 0 interrupt, and comparator 1 interrupt are different. Refer to **12.5 Timer RC Interrupt, Comparator 0 Interrupt, and Comparator 1 Interrupt**.

12.1.6.3 ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using bits ILVL2 to ILVL0. Table 12.3 lists the Settings of Interrupt Priority Levels and Table 12.4 lists the Interrupt Priority Levels Enabled by IPL.

The following are conditions under which an interrupt is acknowledged:

- I flag = 1
- IR bit = 1
- Interrupt priority level > IPL

The I flag, IR bit, bits ILVL2 to ILVL0, and IPL are independent of each other. They do not affect one another.

Table 12.3	Settings of Interrupt Priority
	Levels

ILVL2 to ILVL0 Bits	Interrupt Priority Level	Priority Order
000b	Level 0 (interrupt disabled)	-
001b	Level 1	Low
010b	Level 2	
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	V
111b	Level 7	High

Table 12.4	Interrupt Priority Levels Enabled by
	IPL

IPL	Enabled Interrupt Priority Levels	
000b	Interrupt level 1 and above	
001b	Interrupt level 2 and above	
010b	Interrupt level 3 and above	
011b	Interrupt level 4 and above	
100b	Interrupt level 5 and above	
101b	Interrupt level 6 and above	
110b	Interrupt level 7 and above	
111b	All maskable interrupts are disabled	

12.1.6.4 Interrupt Sequence

An interrupt sequence is performed between an interrupt request acknowledgement and interrupt routine execution.

When an interrupt request is generated while an instruction is being executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, for the SMOVB, SMOVF, SSTR, or RMPA instructions, if an interrupt request is generated while the instruction is being executed, the MCU suspends the instruction to start the interrupt sequence. The interrupt sequence is performed as indicated below.

Figure 12.6 shows the Time Required for Executing Interrupt Sequence.

- (1) The CPU gets interrupt information (interrupt number and interrupt request level) by reading address 00000h. The IR bit for the corresponding interrupt is set to 0 (interrupt not requested).⁽²⁾
- (2) The FLG register is saved to a temporary register⁽¹⁾ in the CPU immediately before entering the interrupt sequence.
- (3) The I, D and U flags in the FLG register are set as follows: The I flag is set to 0 (interrupts disabled). The D flag is set to 0 (single-step interrupt disabled). The U flag is set to 0 (ISP selected). However, the U flag does not change state if an INT instruction for software interrupt number 32 to 63 is executed.
 (1) The CDU is in a block of the content of the table of the table.
- (4) The CPU's internal temporary register⁽¹⁾ is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt is set in the IPL.
- (7) The starting address of the interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, instructions are executed from the starting address of the interrupt routine.

CPU Clock	
Address Bus	Address Undefined X SP-2 (SP-1 (SP-4 (SP-3 (VEC) VEC+1 (VEC+2 (PC) PC)))
Data Bus	Interrupt Undefined VSP-2 SP-1 SP-4 SP-3 VEC VEC+1 VEC+2 Contents
RD	
WR	
The inc ready t	determinate state depends on the instruction queue buffer. A read cycle occurs when the instruction queue buffer is o acknowledge instructions.
Toddy (

Figure 12.6 Time Required for Executing Interrupt Sequence

NOTES:

- 1. This register cannot be used by user.
- 2. Refer to **12.5 Timer RC Interrupt, Comparator 0 Interrupt, and Comparator 1 Interrupt** for the IR bit operations of the timer RC interrupt, comparator 0 interrupt, and comparator 1 interrupt.

12.1.6.5 Interrupt Response Time

Figure 12.7 shows the Interrupt Response Time. The interrupt response time is the period between an interrupt request generation and the execution of the first instruction in the interrupt routine. The interrupt response time includes the period between interrupt request generation and the completion of execution of the instruction (refer to (a) in Figure 12.7) and the period required to perform the interrupt sequence (20 cycles, refer to (b) in Figure 12.7).

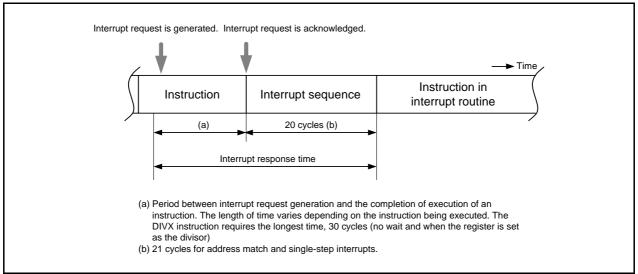


Figure 12.7 Interrupt Response Time

12.1.6.6 IPL Change when Interrupt Request is Acknowledged

When an interrupt request of a maskable interrupt is acknowledged, the interrupt priority level of the acknowledged interrupt is set in the IPL.

When a software interrupt or special interrupt request is acknowledged, the level listed in Table 12.5 is set in the IPL.

Table 12.5 lists the IPL Value When Software or Special Interrupt Is Acknowledged.

Table 12.5 IPL Value When Software or Special Interrupt Is Acknowledged

Interrupt Source	Value Set in IPL
Watchdog timer, oscillation stop detection, voltage monitor 1,	7
voltage monitor 2, address break	
Software, address match, single-step	Not changed

12.1.6.7 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After an extended 16 bits, 4 high-order bits in the PC and 4 high-order (IPL) and 8 low-order bits in the FLG register, are saved to the stack, the 16 low-order bits in the PC are saved.

Figure 12.8 shows the Stack State Before and After Acknowledgement of Interrupt Request.

The other necessary registers are saved by a program at the beginning of the interrupt routine. The PUSHM instruction can save several registers in the register bank being currently $used^{(1)}$ with a single instruction.

NOTE:

1. Selectable from registers R0, R1, R2, R3, A0, A1, SB, and FB.

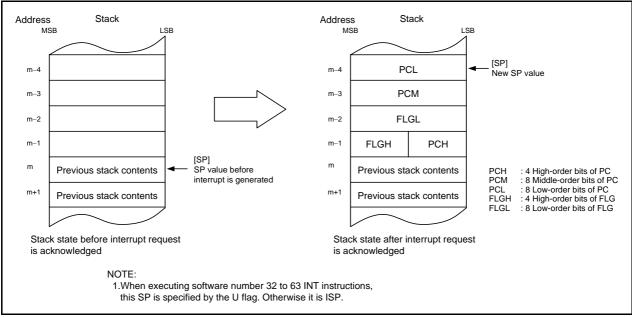


Figure 12.8 Stack State Before and After Acknowledgement of Interrupt Request

The register saving operation, which is performed as part of the interrupt sequence, saved in 8 bits at a time in four steps.

Figure 12.9 shows the Register Saving Operation.

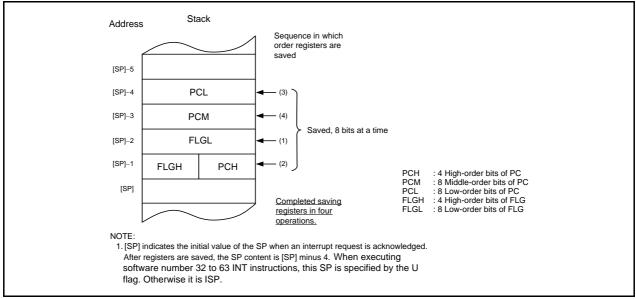


Figure 12.9 Register Saving Operation

12.1.6.8 Returning from an Interrupt Routine

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC, which have been saved to the stack, are automatically restored. The program, that was running before the interrupt request was acknowledged, starts running again.

Restore registers saved by a program in an interrupt routine using the POPM instruction or others before executing the REIT instruction.

12.1.6.9 Interrupt Priority

If two or more interrupt requests are generated while a single instruction is being executed, the interrupt with the higher priority is acknowledged.

Set bits ILVL2 to ILVL0 to select the desired priority level for maskable interrupts (peripheral functions). However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, and the higher priority interrupts acknowledged.

The priority levels of special interrupts, such as reset (reset has the highest priority) and watchdog timer, are set by hardware.

Figure 12.10 shows the Priority Levels of Hardware Interrupts.

The interrupt priority does not affect software interrupts. The MCU jumps to the interrupt routine when the instruction is executed.

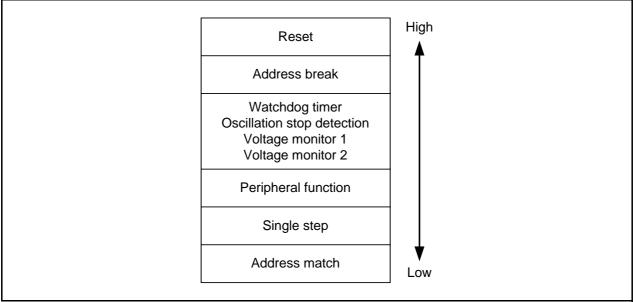


Figure 12.10 Priority Levels of Hardware Interrupts

12.1.6.10 Interrupt Priority Judgement Circuit

The interrupt priority judgement circuit selects the highest priority interrupt, as shown in Figure 12.11.

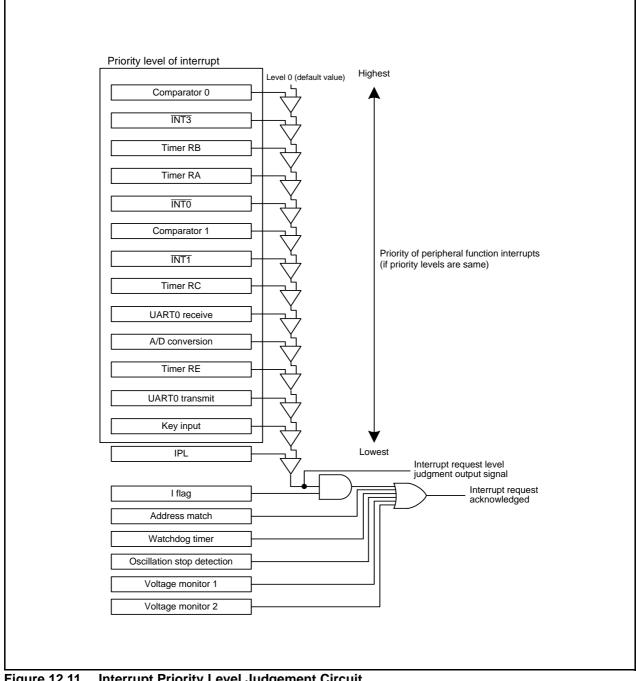


Figure 12.11 Interrupt Priority Level Judgement Circuit

INT Interrupt 12.2

INTi Interrupt (i = 0, 1, 3) 12.2.1

The INTi interrupt is generated by an INTi input. When using the INTi interrupt, the INTiEN bit in the INTEN register is set to 1 (enable). The edge polarity is selected using the INTiPL bit in the INTEN register and the POL bit in the INTiIC register.

Inputs can be passed through a digital filter with three different sampling clocks.

The INTO pin is shared with the pulse output forced cutoff of timer RC and is shared with the external trigger input of timer RB.

Figure 12.12 shows the INTEN Register. Figure 12.13 shows the INTF Register.

b7 b6 b5	b4 b3 b2 b1 b0				
0	0	Symbol	Address	After Reset	
		INTEN	00F9h	00h	
		Bit Symbol	Bit Name	Function	RW
		INTOEN	INTO input enable bit	0 : Disable 1 : Enable	RW
		INTOPL	INTO input polarity select bit ^(1,2)	0 : One edge 1 : Both edges	RW
		INT1EN	INT1 input enable bit	0 : Disable 1 : Enable	RW
		INT1PL	INT1 input polarity select bit ^(1,2)	0 : One edge 1 : Both edges	RW
		 (b5-b4)	Reserved bits	Set to 0.	RW
		INT3EN	INT3 input enable bit	0 : Disable 1 : Enable	RW
		INT3PL	INT3 input polarity select bit ^(1,2)	0 : One edge 1 : Both edges	RW

1. When setting the INTiPL bit (i = 0 to 3) to 1 (both edges), set the POL bit in the INTiPC register to 0 (selects falling edge).

2. The IR bit in the INTIIC register may be set to 1 (requests interrupt) when the INTIPL bit is rew ritten. Refer to 12.6.4 Changing Interrupt Sources.

Figure 12.12 INTEN Register

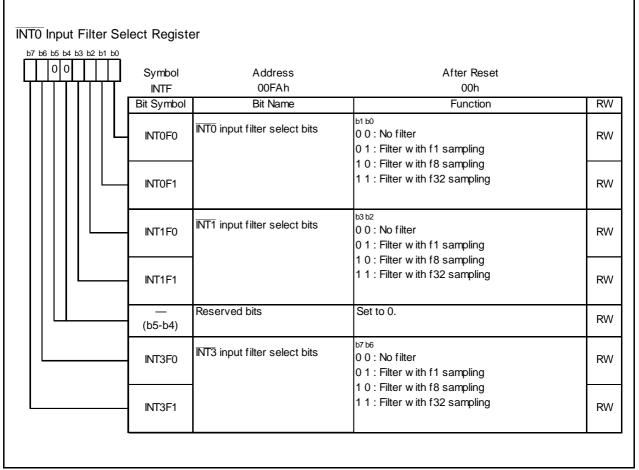


Figure 12.13 INTF Register

12.2.2 INTi Input Filter (i = 0, 1, 3)

The \overline{INTi} input contains a digital filter. The sampling clock is selected by bits INTiF1 to INTiF0 in the INTF register. The IR bit in the INTIC register is set to 1 (interrupt requested) when the \overline{INTi} level is sampled for every sampling clock and the sampled input level matches three times.

Figure 12.14 shows the Configuration of \overline{INTi} Input Filter. Figure 12.15 shows an Operating Example of \overline{INTi} Input Filter.

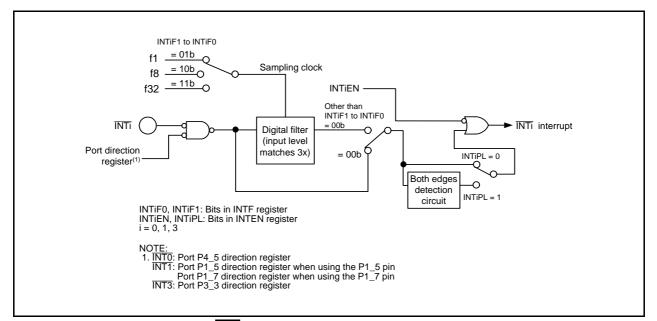


Figure 12.14 Configuration of INTi Input Filter

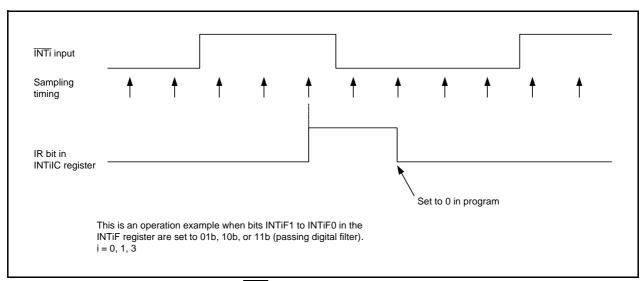


Figure 12.15 Operating Example of INTi Input Filter

12.3 Key Input Interrupt

A key input interrupt request is generated by one of the input edges of the $\overline{K10}$ to $\overline{K13}$ pins. The key input interrupt can be used as a key-on wake-up function to exit wait or stop mode.

The KIiEN (i = 0 to 3) bit in the KIEN register can select whether the pins are used as $\overline{\text{KIi}}$ input. The KIiPL bit in the KIEN register can select the input polarity.

When inputting "L" to the $\overline{\text{KIi}}$ pin which sets the KIiPL bit to 0 (falling edge), the input of the other pins $\overline{\text{K10}}$ to $\overline{\text{K13}}$ is not detected as interrupts. Also, when inputting "H" to the $\overline{\text{KIi}}$ pin, which sets the KIiPL bit to 1 (rising edge), the input of the other pins $\overline{\text{K10}}$ to $\overline{\text{K13}}$ is not detected as interrupts.

Figure 12.16 shows a Block Diagram of Key Input Interrupt.

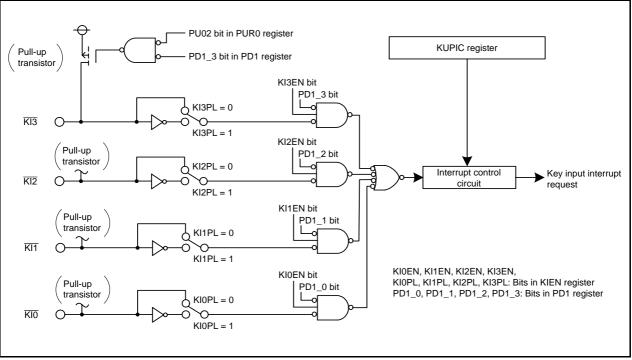
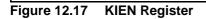



Figure 12.16 Block Diagram of Key Input Interrupt

b7 b6 b5 b4 b3 b2 b1				
	Symbol	Address	After Reset	
	KIEN	00FBh	00h	
	Bit Symbol	Bit Name	Function	RW
	KIOEN	KI0 input enable bit	0 : Disable 1 : Enable	RW
L	KIOPL	KI0 input polarity select bit	0 : Falling edge 1 : Rising edge	RW
	KI1EN	KI1 input enable bit	0 : Disable 1 : Enable	RW
	KI1PL	KI1 input polarity select bit	0 : Falling edge 1 : Rising edge	RW
	KI2EN	Kl2 input enable bit	0 : Disable 1 : Enable	RW
	KI2PL	Kl2 input polarity select bit	0 : Falling edge 1 : Rising edge	RW
	KI3EN	KI3 input enable bit	0 : Disable 1 : Enable	RW
	KI3PL	Kl3 input polarity select bit	0 : Falling edge 1 : Rising edge	RW

12.4 Address Match Interrupt

An address match interrupt request is generated immediately before execution of the instruction at the address indicated by the RMADi register (i = 0 or 1). This interrupt is used as a break function by the debugger. When using the on-chip debugger, do not set an address match interrupt (registers of AIER, RMAD0, and RMAD1 and fixed vector tables) in a user system.

Set the starting address of any instruction in the RMADi register. Bits AIER0 and AIER1 in the AIER0 register can be used to select enable or disable of the interrupt. The I flag and IPL do not affect the address match interrupt. The value of the PC (Refer to **12.1.6.7 Saving a Register** for the value of the PC) which is saved to the stack when an address match interrupt is acknowledged varies depending on the instruction at the address indicated by the RMADi register. (The appropriate return address is not saved on the stack.) When returning from the address match interrupt, return by one of the following means:

- Change the content of the stack and use the REIT instruction.
- Use an instruction such as POP to restore the stack as it was before the interrupt request was acknowledged. Then use a jump instruction.

Table 12.6 lists the Values of PC Saved to Stack when Address Match Interrupt is Acknowledged, Table 12.7 lists the Correspondence Between Address Match Interrupt Sources and Associated Registers. Figure 12.18 shows Registers AIER and RMAD0 to RMAD1.

Table 12.6	Values of PC Saved to Stack when Address Match Interrupt is Acknowledged
------------	--

Address Indicated by RMADi Register (i = 0 or 1)					PC Value Saved ⁽¹⁾	
 Instruction 	 Instruction with 2-byte operation code⁽²⁾ 					Address indicated by
 Instruction 	Instruction with 1-byte operation code ⁽²⁾					RMADi register + 2
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ	#IMM8,dest	
STNZ	#IMM8,dest	STZX	#IMM81,#IM	M82,dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM	dest	
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S	#IMM,dest (h	owever, de	st = A0 or A1)			
 Instruction 	Instructions other than the above Address indicated by			Address indicated by		
						RMADi register + 1

NOTES:

- 1. Refer to the **12.1.6.7 Saving a Register** for the PC value saved.
- 2. Operation code: Refer to the R8C/Tiny Series Software Manual (REJ09B0001).

Chapter 4. Instruction Code/Number of Cycles contains diagrams showing operation code below each syntax. Operation code is shown in the bold frame in the diagrams.

Table 12.7	Correspondence Between Address Match Interrupt Sources and Associated Registers
------------	---

Address Match Interrupt Source	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1

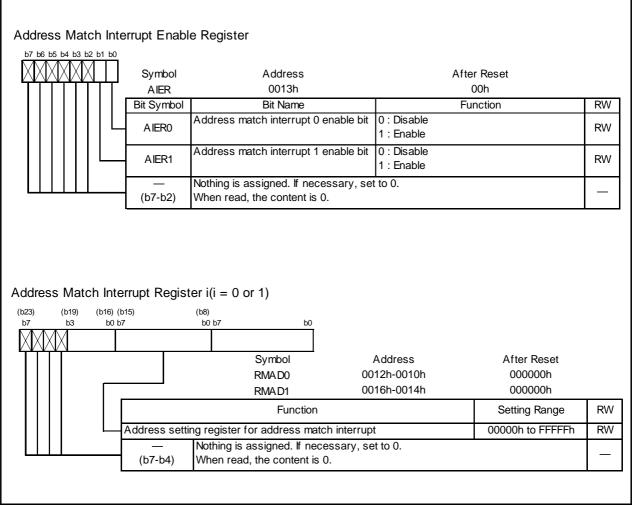


Figure 12.18 Registers AIER and RMAD0 to RMAD1

12.5 Timer RC Interrupt, Comparator 0 Interrupt, and Comparator 1 Interrupt

As with other maskable interrupts, the timer RC interrupt, comparator 0 interrupt, and comparator 1 interrupt are controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, some differences from other maskable interrupts apply.

Refer to chapters of the individual peripheral functions (14.3 Timer RC and 19.4 Comparator 0 Interrupt and Comparator 1 Interrupt) for the status register and enable register.

Refer to **12.1.6 Interrupt Control** for the interrupt control register.

12.6 Notes on Interrupts

12.6.1 Reading Address 00000h

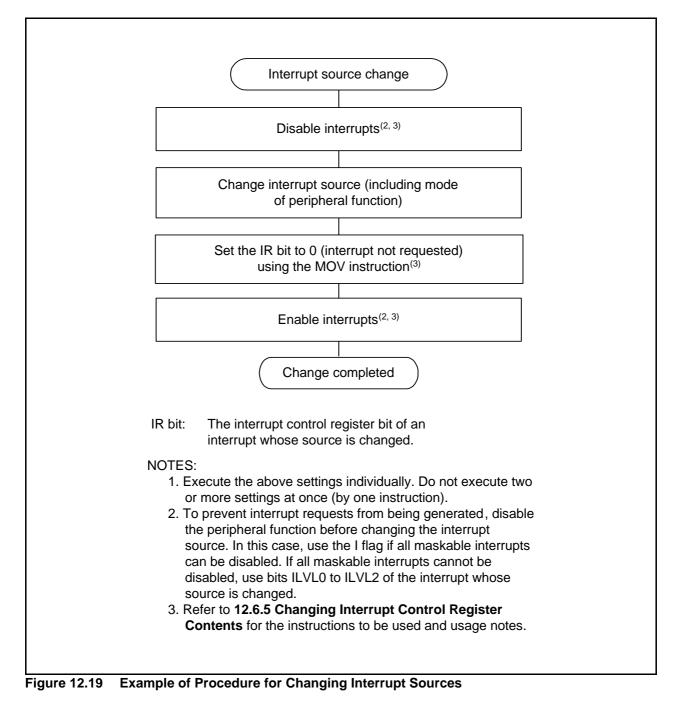
Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the acknowledged interrupt IR bit is set to 0.

If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be generated.

12.6.2 SP Setting

Set any value in the SP before an interrupt is acknowledged. The SP is set to 0000h after reset. Therefore, if an interrupt is acknowledged before setting a value in the SP, the program may run out of control.

12.6.3 External Interrupt and Key Input Interrupt


Either "L" level or an "H" level of width shown in the Electrical Characteristics is necessary for the signal input to pins $\overline{INT0}$, $\overline{INT1}$, $\overline{INT3}$ and pins $\overline{K10}$ to $\overline{K13}$, regardless of the CPU clock. For details, refer to **Table 21.19** (VCC = 5V), **Table 21.25** (VCC = 3V) **External Interrupt** \overline{INTi} (i = 0, 1, 3)

Input.

12.6.4 Changing Interrupt Sources

The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source changes. When using an interrupt, set the IR bit to 0 (no interrupt requested) after changing the interrupt source. In addition, changes of interrupt sources include all factors that change the interrupt sources assigned to individual software interrupt numbers, polarities, and timing. Therefore, if a mode change of a peripheral function involves interrupt sources, edge polarities, and timing, set the IR bit to 0 (no interrupt requested) after the change. Refer to the individual peripheral function for its related interrupts.

Figure 12.19 shows an Example of Procedure for Changing Interrupt Sources.

12.6.5 Changing Interrupt Control Register Contents

- (a) The contents of an interrupt control register can only be changed while no interrupt requests corresponding to that register are generated. If interrupt requests may be generated, disable interrupts before changing the interrupt control register contents.
- (b) When changing the contents of an interrupt control register after disabling interrupts, be careful to choose appropriate instructions.

Changing any bit other than IR bit

If an interrupt request corresponding to a register is generated while executing the instruction, the IR bit may not be set to 1 (interrupt requested), and the interrupt request may be ignored. If this causes a problem, use the following instructions to change the register: AND, OR, BCLR, BSET **Changing IR bit**

If the IR bit is set to 0 (interrupt not requested), it may not be set to 0 depending on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(c) When disabling interrupts using the I flag, set the I flag as shown in the sample programs below. Refer to (b) regarding changing the contents of interrupt control registers by the sample programs.

Sample programs 1 to 3 are for preventing the I flag from being set to 1 (interrupts enabled) before the interrupt control register is changed for reasons of the internal bus or the instruction queue buffer.

Example 1: Use NOP instructions to prevent I flag from being set to 1 before interrupt control register is changed

INT_SWITC	H1:	
FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TRAIC register to 00h
NOP		•
NOP		
FSET	Ι	; Enable interrupts

Example 2: Use dummy read to delay FSET instruction

INT_SWITCH2:

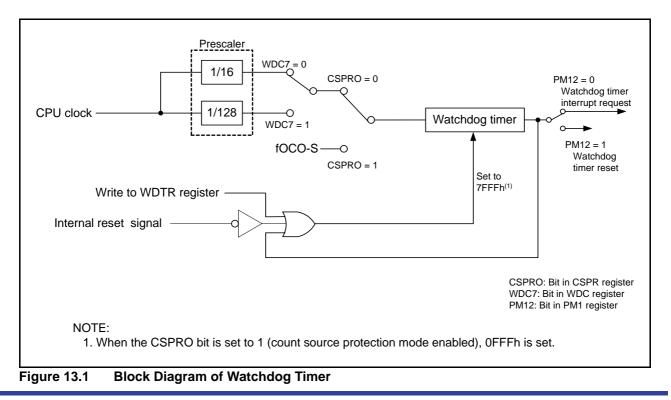
FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TRAIC register to 00h
MOV.W	MEM,R0	; <u>Dummy read</u>
FSET	Ι	; Enable interrupts

Example 3: Use POPC instruction to change I flag

s
ter to 00h
te

13. Watchdog Timer

The watchdog timer is a function that detects when a program is out of control. Use of the watchdog timer is recommended to improve the reliability of the system. The watchdog timer contains a 15-bit counter and allows selection of count source protection mode enable or disable.


Table 13.1 lists the Specifications for Watchdog Timer.

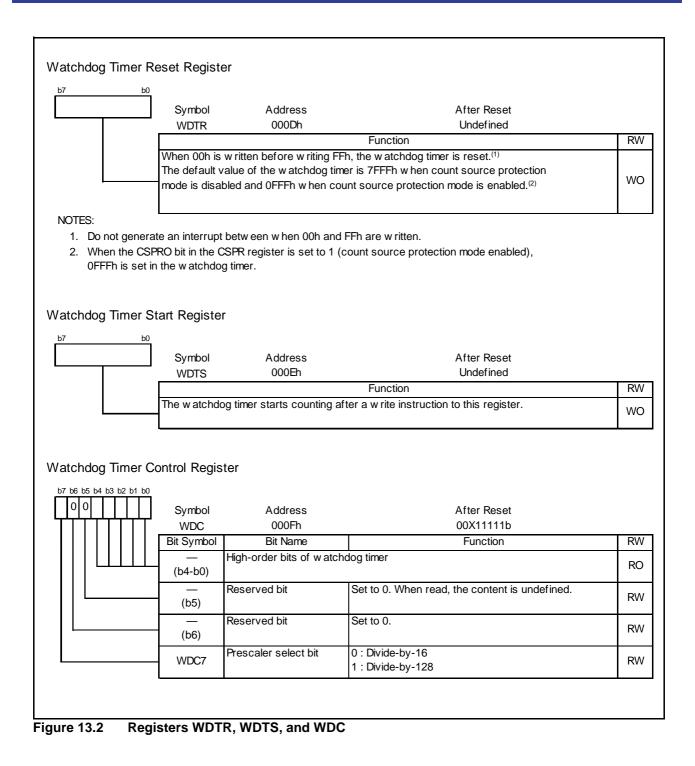
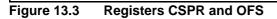

Refer to 5.5 Watchdog Timer Reset for details on the watchdog timer.

Figure 13.1 shows the Block Diagram of Watchdog Timer, Figure 13.2 shows the Registers WDTR, WDTS, and WDC and Figure 13.3 shows the Registers CSPR and OFS.

Item	Count Source Protection Mode Disabled	Count Source Protection Mode Enabled
Count source	CPU clock	Low-speed on-chip oscillator clock
Count operation	Decrement	
Count start condition	Either of the following can be selected	
	• After reset, count starts automatically	
	 Count starts by writing to WDTS registe 	r
Count stop condition	Stop mode, wait mode	None
Reset condition of	• Reset	
watchdog timer	Write 00h to the WDTR register before v	writing FFh
	Underflow	
Operation at the time	Watchdog timer interrupt or watchdog	Watchdog timer reset
of underflow	timer reset	
Select functions	 Division ratio of prescaler 	
	Selected by the WDC7 bit in the WDC	register
	 Count source protection mode 	
	Whether count source protection mode	is enabled or disabled after a reset can
	be selected by the CSPROINI bit in the	OFS register (flash memory). If count
	source protection mode is disabled afte	er a reset, it can be enabled or disabled
	by the CSPRO bit in the CSPR register	· (program).
	 Starts or stops of the watchdog timer aft 	
	Selected by the WDTON bit in the OFS	Fregister (flash memory).



000	0000	Symbol	Address		After Reset ⁽¹⁾	
		CSPR	001Ch		00h	
		Bit Symbol	Bit Name		Function	RW
		 (b6-b0)	Reserved Bits		Set to 0.	RW
		CSPRO	Count Source Protection Select Bit ⁽²⁾	Mode	0 : Count source protection mode disabled 1 : Count source protection mode enabled	RW
0 ca	annot be se	w riting 1 to s t by a progra lect Regist				
b7 b6 b5 b4		loot rtogiot				
101		Symbol OFS	Address 0FFFFh		When Shipping FFh ⁽²⁾	
		Bit Symbol	Bit Name		Function	RW
		WDTON	Watchdog timer start select bit		arts watchdog timer automatically after reset atchdog timer is inactive after reset	RW
		(b1)	Reserved bit	Set to	1.	RW
		ROMCR	ROM code protect disabled bit		M code protect disabled MCP1 enabled	RW
			ROM code protect bit	0 : RC	M code protect enabled	RW
		ROMCP1		1 : RC	M code protect disabled	
		ROMCP1 (b4)	Reserved bit	1 : RC Set to		RW
		_	Reserved bit Reserved bit		1.	_
		(b4)		Set to	1. 0.	RW RW RW

2. If the block including the OFS register is erased, FFh is set to the OFS register.

13.1 Count Source Protection Mode Disabled

The count source of the watchdog timer is the CPU clock when count source protection mode is disabled. Table 13.2 lists the Watchdog Timer Specifications (with Count Source Protection Mode Disabled).

Table 13.2	Watchdog Timer Specifications (with Count Source Protection Mode Disabled)
------------	--

Item	Specification
Count source	CPU clock
Count operation	Decrement
Period	Division ratio of prescaler (n) × count value of watchdog timer (32768) ⁽¹⁾ CPU clock
	n: 16 or 128 (selected by WDC7 bit in WDC register)
	Example: When the CPU clock frequency is 16 MHz and prescaler divides by 16, the period is approximately 32.8 ms
Reset condition of watchdog	• Reset
timer	 Write 00h to the WDTR register before writing FFh Underflow
Count start condition	 The WDTON bit⁽²⁾ in the OFS register (0FFFFh) selects the operation of the watchdog timer after a reset When the WDTON bit is set to 1 (watchdog timer is in stop state after reset) The watchdog timer and prescaler stop after a reset and the count starts when the WDTS register is written to When the WDTON bit is set to 0 (watchdog timer starts automatically after exiting) The watchdog timer and prescaler start counting automatically after a reset
Count stop condition	Stop and wait modes (inherit the count from the held value after exiting modes)
Operation at time of underflow	 When the PM12 bit in the PM1 register is set to 0 Watchdog timer interrupt When the PM12 bit in the PM1 register is set to 1 Watchdog timer reset (refer to 5.5 Watchdog Timer Reset)

NOTES:

- 1. The watchdog timer is reset when 00h is written to the WDTR register before FFh. The prescaler is reset after the MCU is reset. Some errors in the period of the watchdog timer may be caused by the prescaler.
- 2. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.

13.2 Count Source Protection Mode Enabled

The count source of the watchdog timer is the low-speed on-chip oscillator clock when count source protection mode is enabled. If the CPU clock stops when a program is out of control, the clock can still be supplied to the watchdog timer.

Table 13.3 lists the Watchdog Timer Specifications (with Count Source Protection Mode Enabled).

Table 13.3 Watchdog Timer Specifications (with Count Source Protection Mode Enabled

Item	Specification				
Count source	Low-speed on-chip oscillator clock				
Count operation	Decrement				
Period	Count value of watchdog timer (4096) Low-speed on-chip oscillator clock Example: Period is approximately 32.8 ms when the low-speed of chip oscillator clock frequency is 125 kHz				
Reset condition of watchdog timer	 Reset Write 00h to the WDTR register before writing FFh Underflow 				
Count start condition	 The WDTON bit⁽¹⁾ in the OFS register (0FFFFh) selects the operation of the watchdog timer after a reset. When the WDTON bit is set to 1 (watchdog timer is in stop state after reset) The watchdog timer and prescaler stop after a reset and the count starts when the WDTS register is written to When the WDTON bit is set to 0 (watchdog timer starts automatically after reset) The watchdog timer and prescaler start counting automatically after a reset 				
Count stop condition	None (The count does not stop in wait mode after the count starts. The MCU does not enter stop mode.)				
Operation at time of underflow	Watchdog timer reset (Refer to 5.5 Watchdog Timer Reset.)				
Registers, bits	 When setting the CSPPRO bit in the CSPR register to 1 (count source protection mode is enabled)⁽²⁾, the following are set automatically Set 0FFFh to the watchdog timer Set the CM14 bit in the CM1 register to 0 (low-speed on-chip oscillator on) Set the PM12 bit in the PM1 register to 1 (The watchdog timer is reset when watchdog timer underflows) The following conditions apply in count source protection mode Writing to the CM10 bit in the CM1 register is disabled (It remains unchanged even if it is set to 1. The MCU does not enter stop mode.) Writing to the CM14 bit in the CM1 register is disabled (It remains unchanged even if it is set to 1. The low-speed on-chip oscillator does not stop.) 				

NOTES:

- 1. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.
- 2. Even if 0 is written to the CSPROINI bit in the OFS register, the CSPRO bit is set to 1. The CSPROINI bit cannot be changed by a program. To set the CSPROINI bit, write 0 to bit 7 of address 0FFFFh with a flash programmer.

14. Timers

The MCU has two 8-bit timers with 8-bit prescalers, a 16-bit timer, and a timer with a 4-bit counter and an 8-bit counter. The two 8-bit timers with 8-bit prescalers are timer RA and timer RB. These timers contain a reload register to store the default value of the counter. The 16-bit timer is timer RC, and has input capture and output compare functions. The 4-bit and 8-bit counters are timer RE, and has an output compare function. All the timers operate independently.

Table 14.1 lists Functional Comparison of Timers.

Item		Timer RA	Timer RB	Timer RC	Timer RE
Configuration		8-bit timer with 8- bit prescaler (with reload register)	8-bit timer with 8- bit prescaler (with reload register)	16-bit free-run timer (with input capture and output compare)	4-bit counter 8-bit counter
Count		Decrement	Decrement	Increment	Increment
Count source		• f1 • f2 • f8 • fOCO	 f1 f2 f8 Timer RA underflow 	• f1 • f2 • f4 • f8 • f32 • fOCO40M • TRCCLK	• f4 • f8 • f32
Function	Timer Mode	provided	provided	provided (input capture function, output compare function)	not provided
	Pulse Output Mode	provided	not provided	not provided	not provided
	Event Counter Mode	provided	not provided	not provided	not provided
	Pulse Width Measurement Mode	provided	not provided	not provided	not provided
	Pulse Period Measurement Mode	provided	not provided	not provided	not provided
	Programmable Waveform Generation Mode	not provided	provided	not provided	not provided
	Programmable One-Shot generation Mode	not provided	provided	not provided	not provided
	Programmable Wait One-Shot Generation Mode	not provided	provided	not provided	not provided
	Input Capture Mode	not provided	not provided	provided	not provided
	Output Compare Mode	not provided	not provided	provided	provided
	PWM Mode	not provided	not provided	provided	not provided
	PWM2 Mode	not provided	not provided	provided	not provided
Input Pin		TRAIO	INTO	INTO, TRCCLK, TRCTRG TRCIOA, TRCIOB, TRCIOC, TRCIOD	-
		<u>TRAO</u> TRAIO	TRBO	TRCIOA, TRCIOB, TRCIOC, TRCIOD	TREO
Related Interrupt		<u>Time</u> r RA interrupt INT1 interrupt	Timer RB interrupt INT0 interrupt	Compare Match / Input Capture A to D interrupt <u>Overf</u> low interrupt INTO interrupt	Timer RE interrupt
Timer Stop		provided	provided	provided	provided

 Table 14.1
 Functional Comparison of Timers

14.1 Timer RA

Timer RA is an 8-bit timer with an 8-bit prescaler.

The prescaler and timer each consist of a reload register and counter. The reload register and counter are allocated at the same address, and can be accessed when accessing registers TRAPRE and TRA (refer to **Tables 14.2 to 14.6 the Specification of Each Modes**).

The count source for timer RA is the operating clock that regulates the timing of timer operations such as counting and reloading.

Figure 14.1 shows a Block Diagram of Timer RA. Figures 14.2 and 14.3 show the registers associated with Timer RA.

Timer RA contains the following five operating modes:

- Timer mode: The timer counts the internal count source.
- Pulse output mode: The timer counts the internal count source and outputs pulses which invert the polarity by underflow of the timer.
- Event counter mode: The timer counts external pulses.
- Pulse width measurement mode:
- The timer measures the pulse width of an external pulse.
- Pulse period measurement mode:
- The timer measures the pulse period of an external pulse.

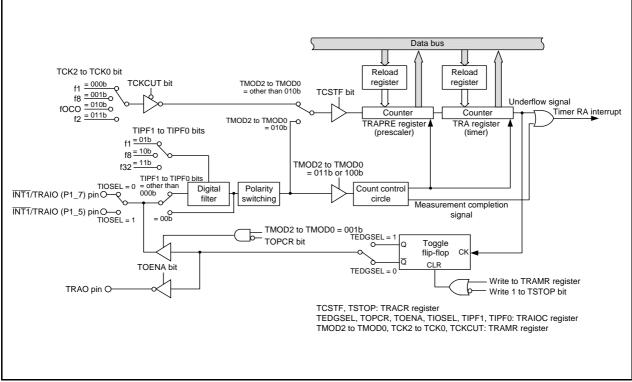
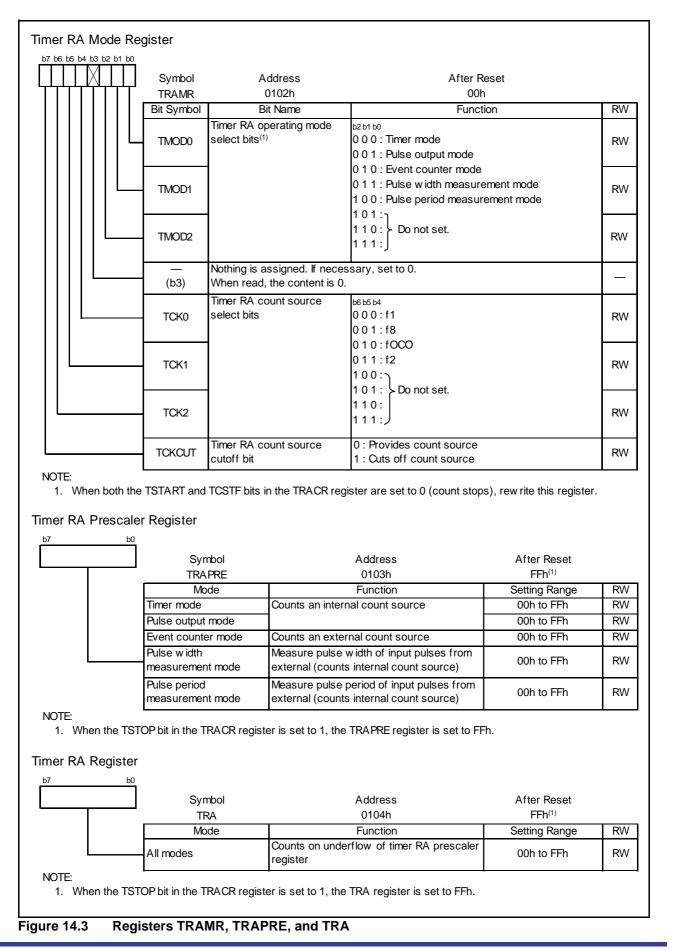



Figure 14.1 Block Diagram of Timer RA

b7 b6 b5 b4 b3 b2	2 b1 b0			· · ·	
ДЩ-ЦЩ-		Symbol	Address 0100h	After Reset 00h	
	г	TRACR	Bit Name	Function	RW
		Bit Symbol	Timer RA count start bit ⁽¹⁾		RVV
		TSTART		0 : Count stops 1 : Count starts	RW
		TCSTF	Timer RA count status flag ⁽¹⁾	0 : Count stops 1 : During count	RO
		TSTOP	Timer RA count forcible stop bit ⁽²⁾	When this bit is set to 1, the count is forcibly stopped. When read, its content is 0.	RW
∟		(b3)	Nothing is assigned. If neces When read, the content is 0.	sary, set to 0.	-
		TEDGF	Active edge judgment flag ^(3, 5)	0 : Active edge not received 1 : Active edge received (end of measurement period)	RW
		TUNDF	Timer RA underflow flag ^(3, 5)	0 : No underflow 1 : Underflow	RW
	(b7-b6)		Nothing is assigned. If neces When read, the content is 0.	Nothing is assigned. If necessary, set to 0.	
 When the a reset. Bits TEL unchan In pulse register 	he TSTO DGF and nged w he e w idth m r. If it is n	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to	 b 1, bits TSTART and TCSTF a be set to 0 by w riting 0 to the en. mode and pulse period measure 	arding bits TSTART and TCSTF. nd registers TPRAPRE and TRA are set to the valu se bits by a program. How ever, their value remain urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, w rite 1 to them. ter mode.	s
 Refer to When till a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse	 b 1, bits TSTART and TCSTF a be set to 0 by w riting 0 to the an. mode and pulse period measure avoid changing the values of 	nd registers TPRAPRE and TRA are set to the valu se bits by a program. How ever, their value remain urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them.	s
 Refer to When the a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse of Register	 b 1, bits TSTART and TCSTF a be set to 0 by w riting 0 to the an. mode and pulse period measure avoid changing the values of output mode, and event count 	nd registers TPRAPRE and TRA are set to the valu se bits by a program. How ever, their value remains urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them. ter mode.	s
 Refer to When till a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse of Register Symbol	 b 1, bits TSTART and TCSTF a be set to 0 by writing 0 to the mode and pulse period measure avoid changing the values of output mode, and event coun 	nd registers TPRAPRE and TRA are set to the value se bits by a program. How ever, their value remains urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them. ter mode. After Reset	s
 Refer to When till a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse of Register Symbol TRAIOC	Address 01, bits TSTART and TCSTF a be set to 0 by writing 0 to the en. mode and pulse period measu avoid changing the values of output mode, and event coun	nd registers TPRAPRE and TRA are set to the values bits by a program. How ever, their value remains urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them. ter mode.	s TRACR
 Refer to When till a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse of Register Symbol	 b 1, bits TSTART and TCSTF a be set to 0 by writing 0 to the mode and pulse period measure avoid changing the values of output mode, and event coun 	nd registers TPRAPRE and TRA are set to the value se bits by a program. How ever, their value remains urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them. ter mode. After Reset	s TRACR
 Refer to When the a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement lecessary to mode, pulse of Register Symbol TRAIOC Bit Symbol	Address Other States Other Stat	nd registers TPRAPRE and TRA are set to the values bits by a program. How ever, their value remains urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them. ter mode.	s TRACR
 Refer to When till a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse of Register Symbol TRAIOC Bit Symbol TEDGSEL	Address 010, bits TSTART and TCSTF a be set to 0 by writing 0 to the on. The mode and pulse period measure avoid changing the values of output mode, and event coun Address 0101h Bit Name TRAIO polarity switch bit	nd registers TPRAPRE and TRA are set to the values bits by a program. How ever, their value remains urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them. ter mode.	s TRACR
 Refer to When till a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse of Register Symbol TRAIOC Bit Symbol TEDGSEL TOPCR	Address 01, bits TSTART and TCSTF a be set to 0 by writing 0 to the mode and pulse period measu avoid changing the values of output mode, and event coun Address 0101h Bit Name TRAIO polarity switch bit	nd registers TPRAPRE and TRA are set to the values bits by a program. How ever, their value remains urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them. ter mode.	s
 Refer to When till a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse of Register Symbol TRAIOC Bit Symbol TEDGSEL TOPCR TOENA	Address 010, bits TSTART and TCSTF a be set to 0 by writing 0 to the on. mode and pulse period measu avoid changing the values of output mode, and event coun Address 0101h Bit Name TRAIO polarity switch bit TRAIO output control bit TRAIO output enable bit	nd registers TPRAPRE and TRA are set to the values bits by a program. How ever, their value remains urement mode, use the MOV instruction to set the bits TEDGF and TUNDF, write 1 to them. ter mode.	s TRACR RW RW RW
 Refer to When till a reset. Bits TEL unchan In pulse register Set to 0 	he TSTO DGF and nged w he w idth m r. If it is n) in timer	P bit is set to TUNDF can en 1 is w ritte neasurement necessary to mode, pulse of Register Symbol TRAIOC Bit Symbol TEDGSEL TOPCR TOENA TIOSEL TIPF0	Address 01, bits TSTART and TCSTF a be set to 0 by writing 0 to the m. mode and pulse period measu avoid changing the values of output mode, and event coun Address 0101h Bit Name TRAIO polarity switch bit TRAIO output control bit TRAIO output enable bit	After Reset 00h Function varies depending on operating mode.	s TRACR RW RW RW RW RW

14.1.1 Timer Mode

In this mode, the timer counts an internally generated count source (refer to **Table 14.2 Timer Mode Specifications**).

Figure 14.4 shows TRAIOC Register in Timer Mode.

Item	Specification		
Count sources	f1, f2, f8, fOCO		
Count operations	• Decrement		
	• When the timer underflows, the contents of the reload register are reloaded and the count is continued.		
Divide ratio	1/(n+1)(m+1)		
	n: Value set in TRAPRE register, m: Value set in TRA register		
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.		
Count stop conditions	• 0 (count stops) is written to the TSTART bit in the TRACR register.		
	•1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.		
Interrupt request	When timer RA underflows [timer RA interrupt].		
generation timing			
INT1/TRAIO pin	Programmable I/O port, or INT1 interrupt input		
function			
TRAO pin function	Programmable I/O port		
Read from timer	The count value can be read by reading registers TRA and TRAPRE.		
Write to timer	• When registers TRAPRE and TRA are written while the count is stopped,		
	values are written to both the reload register and counter.		
	• When registers TRAPRE and TRA are written during the count, values are		
	written to the reload register and counter (refer to 14.1.1.1 Timer Write		
	Control during Count Operation).		

Table 14.2 Timer Mode Specifications

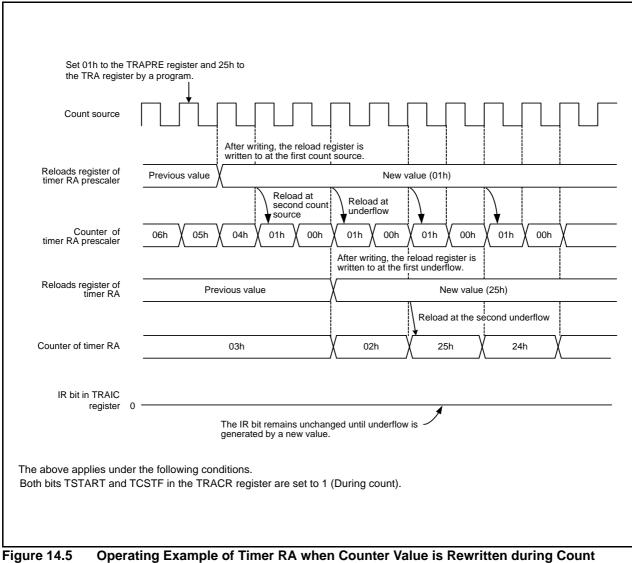

Timer RA I/O Contro	ol Register			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol	Address	After Reset	
	TRA IOC Bit Symbol	0101h Bit Name	00h Function	RW
	TEDGSEL	TRAIO polarity switch bit	Set to 0 in timer mode.	RW
	TOPCR	TRAIO output control bit		RW
	TOENA	TRAO output enable bit		RW
	TIOSEL	INT1/TRAIO select bit	0 : INT1/TRAIO pin (P1_7) 1 : INT1/TRAIO pin (P1_5)	RW
	TIPF0	TRAIO input filter select bits	Set to 0 in timer mode.	RW
	TIPF1			
	 (b7-b6)	Nothing is assigned. If neces When read, the content is 0.	sary, set to 0.	—
	N	•		•

Figure 14.4 TRAIOC Register in Timer Mode

14.1.1.1 Timer Write Control during Count Operation

Timer RA has a prescaler and a timer (which counts the prescaler underflows). The prescaler and timer each consist of a reload register and a counter. When writing to the prescaler or timer, values are written to both the reload register and counter.

However, values are transferred from the reload register to the counter of the prescaler in synchronization with the count source. In addition, values are transferred from the reload register to the counter of the timer in synchronization with prescaler underflows. Therefore, if the prescaler or timer is written to when count operation is in progress, the counter value is not updated immediately after the WRITE instruction is executed. Figure 14.5 shows an Operating Example of Timer RA when Counter Value is Rewritten during Count Operation.

Operation

14.1.2 Pulse Output Mode

In pulse output mode, the internally generated count source is counted, and a pulse with inverted polarity is output from the TRAIO pin each time the timer underflows (refer to **Table 14.3 Pulse Output Mode Specifications**).

Figure 14.6 shows TRAIOC Register in Pulse Output Mode.

Item	Specification
Count sources	f1, f2, f8, fOCO
Count operations	 Decrement When the timer underflows, the contents in the reload register is reloaded and the count is continued.
Divide ratio	1/(n+1)(m+1) n: Value set in TRAPRE register, m: Value set in TRA register
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register.
Interrupt request generation timing	When timer RA underflows [timer RA interrupt].
INT1/TRAIO pin function	Pulse output, programmable output port, or INT1 interrupt ⁽¹⁾
TRAO pin function	Programmable I/O port or inverted output of TRAIO ⁽¹⁾
Read from timer	The count value can be read by reading registers TRA and TRAPRE.
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 14.1.1.1 Timer Write Control during Count Operation).
Select functions	 TRAIO signal polarity switch function The TEDGSEL bit in the TRAIOC register selects the level at the start of pulse output.⁽¹⁾ TRAO output function Pulses inverted from the TRAIO output polarity can be output from the TRAO pin (selectable by the TOENA bit in the TRAIOC register). Pulse output stop function <u>Output from the TRAIO pin is stopped by the TOPCR bit in the TRAIOC register.</u> INT1/TRAIO pin select function P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register.

 Table 14.3
 Pulse Output Mode Specifications

NOTE:

1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR register is written to.

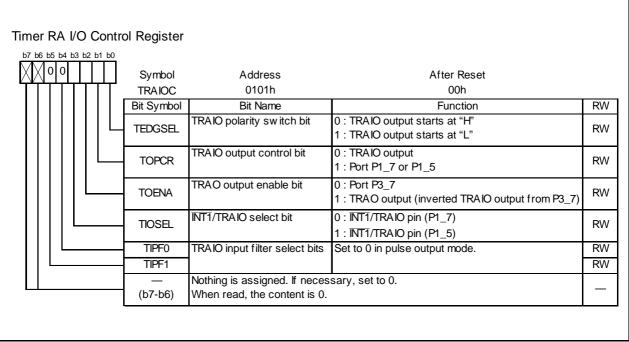


Figure 14.6 TRAIOC Register in Pulse Output Mode

14.1.3 Event Counter Mode

In event counter mode, external signal inputs to the $\overline{INT1}/TRAIO$ pin are counted (refer to **Table 14.4 Event Counter Mode Specifications**).

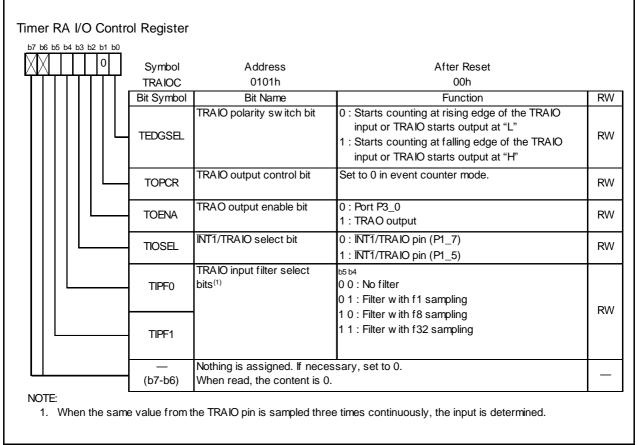

Figure 14.7 shows TRAIOC Register in Event Counter Mode.

Table 14.4	Event Counter	Mode S	Specifications
			poonioanono

Item	Specification		
Count source	External signal which is input to TRAIO pin (active edge selectable by a program)		
Count operations	 Decrement When the timer underflows, the contents of the reload register are reloaded and the count is continued. 		
Divide ratio	1/(n+1)(m+1) n: setting value of TRAPRE register, m: setting value of TRA register		
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.		
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register. 		
Interrupt request generation timing	When timer RA underflows [timer RA interrupt].		
INT1/TRAIO pin function	Count source input (INT1 interrupt input)		
TRAO pin function	Programmable I/O port or pulse output ⁽¹⁾		
Read from timer	The count value can be read by reading registers TRA and TRAPRE.		
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 14.1.1.1 Timer Write Control during Count Operation). 		
Select functions	 INT1 input polarity switch function The TEDGSEL bit in the TRAIOC register selects the active edge of the count source. Count source input pin select function P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register. Pulse output function Pulses of inverted polarity can be output from the TRAO pin each time the timer underflows (selectable by the TOENA bit in the TRAIOC register).⁽¹⁾ Digital filter function Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital filter and select the sampling frequency. 		

NOTE:

1. The level of the output pulse becomes the level when the pulse output starts when the TRAMR register is written to.

14.1.4 Pulse Width Measurement Mode

In pulse width measurement mode, the pulse width of an external signal input to the INT1/TRAIO pin is measured (refer to **Table 14.5 Pulse Width Measurement Mode Specifications**).

Figure 14.8 shows TRAIOC Register in Pulse Width Measurement Mode and Figure 14.9 shows an Operating Example of Pulse Width Measurement Mode.

Item	Specification	
Count sources	f1, f2, f8, fOCO	
Count operations	 Decrement Continuously counts the selected signal only when measurement pulse is "H" level, or conversely only "L" level. When the timer underflows, the contents of the reload register are reloaded and the count is continued. 	
Count start condition	1 (count starts) is written to the TSTART bit in the TRACR register.	
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register. 	
Interrupt request generation timing	 When timer RA underflows [timer RA interrupt]. Rising or falling of the TRAIO input (end of measurement period) [timer RA interrupt] 	
INT1/TRAIO pin function	n Measured pulse input (INT1 interrupt input)	
TRAO pin function	Programmable I/O port	
Read from timer	The count value can be read by reading registers TRA and TRAPRE.	
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 14.1.1.1 Timer Write Control during Count Operation). 	
Select functions	 Measurement level select The TEDGSEL bit in the TRAIOC register selects the "H" or "L" level period. Measured pulse input pin select function P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register. Digital filter function Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital filter and select the sampling frequency. 	

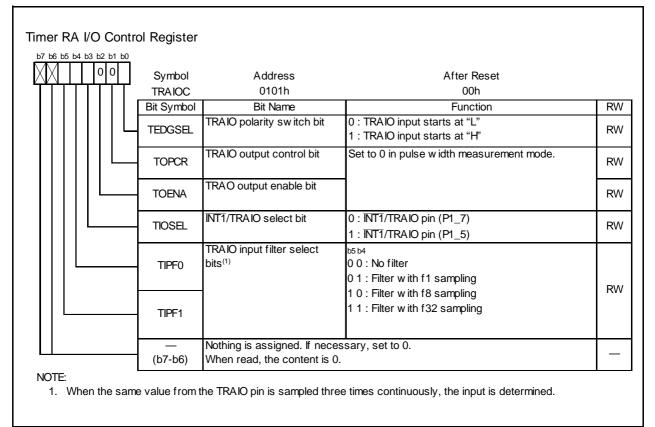


Figure 14.8 TRAIOC Register in Pulse Width Measurement Mode

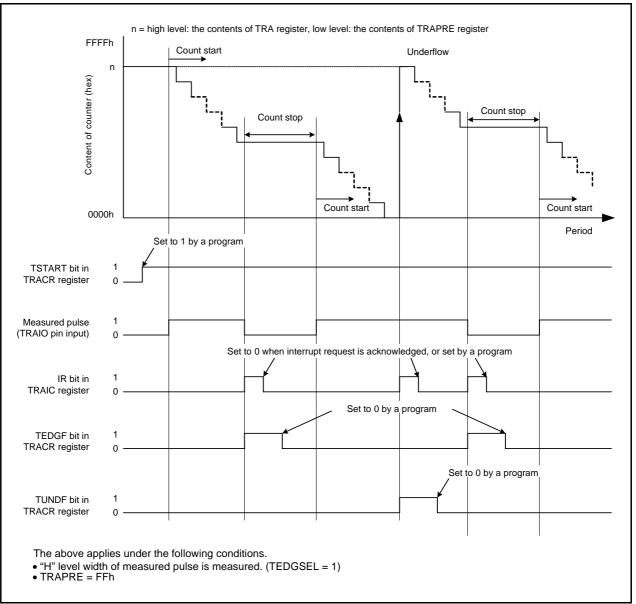


Figure 14.9 Operating Example of Pulse Width Measurement Mode

14.1.5 Pulse Period Measurement Mode

In pulse period measurement mode, the pulse period of an external signal input to the INT1/TRAIO pin is measured (refer to **Table 14.6 Pulse Period Measurement Mode Specifications**).

Figure 14.10 shows TRAIOC Register in Pulse Period Measurement Mode and Figure 14.11 shows an Operating Example of Pulse Period Measurement Mode.

Item	Specification		
Count sources	f1, f2, f8, fOCO		
Count operations	 Decrement After the active edge of the measured pulse is input, the contents of the read- out buffer are retained at the first underflow of timer RA prescaler. Then timer RA reloads the contents in the reload register at the second underflow of timer RA prescaler and continues counting. 		
Count start condition	1 (count start) is written to the TSTART bit in the TRACR register.		
Count stop conditions	 0 (count stop) is written to TSTART bit in the TRACR register. 1 (count forcibly stops) is written to the TSTOP bit in the TRACR register. 		
Interrupt request generation timing	 When timer RA underflows or reloads [timer RA interrupt]. Rising or falling of the TRAIO input (end of measurement period) [timer RA interrupt] 		
INT1/TRAIO pin function	Measured pulse input ⁽¹⁾ (INT1 interrupt input)		
TRAO pin function	Programmable I/O port		
Read from timer	The count value can be read by reading registers TRA and TRAPRE.		
Write to timer	 When registers TRAPRE and TRA are written while the count is stopped, values are written to both the reload register and counter. When registers TRAPRE and TRA are written during the count, values are written to the reload register and counter (refer to 14.1.1.1 Timer Write Control during Count Operation). 		
Select functions	 Measurement period select The TEDGSEL bit in the TRAIOC register selects the measurement period of the input pulse. Measured pulse input pin select function P1_7 or P1_5 is selected by the TIOSEL bit in the TRAIOC register. Digital filter function Bits TIPF0 and TIPF1 in the TRAIOC register enable or disable the digital filter and select the sampling frequency. 		

NOTE:

1. Input a pulse with a period longer than twice the timer RA prescaler period. Input a pulse with a longer "H" and "L" width than the timer RA prescaler period. If a pulse with a shorter period is input to the TRAIO pin, the input may be ignored.

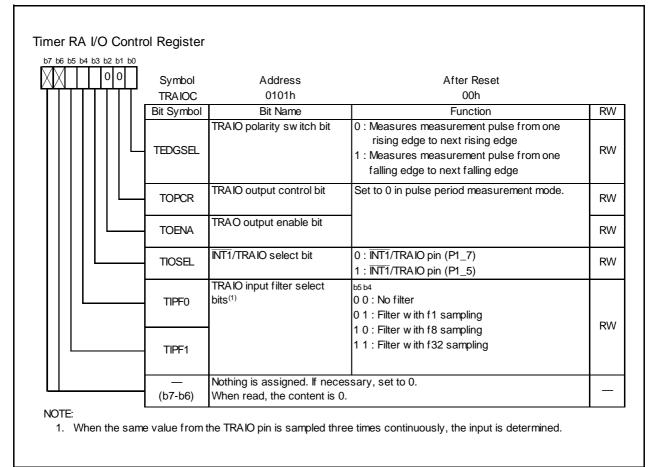


Figure 14.10 TRAIOC Register in Pulse Period Measurement Mode

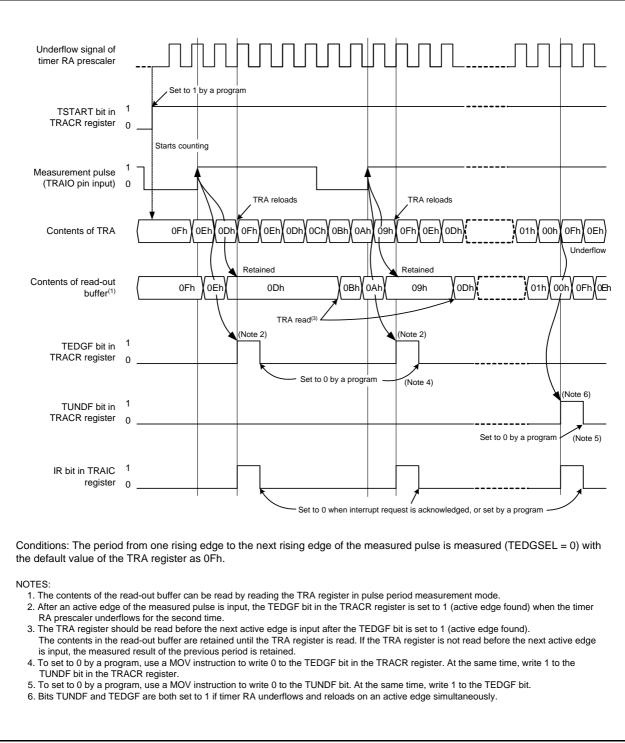


Figure 14.11 Operating Example of Pulse Period Measurement Mode

14.1.6 Notes on Timer RA

- Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the count starts.
- Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
- The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler immediately after the count starts, then set the TEDGF bit to 0.
- The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer $RA^{(1)}$ other than the TCSTF bit. Timer RA starts counting at the first valid edge of the count source after The TCSTF bit is set to 1 (during count). The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0. During this time, do not access registers associated with timer $RA^{(1)}$ other than the TCSTF bit.

NOTE:

1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.

- When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source clock for each write interval.
- When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.

14.2 Timer RB

Timer RB is an 8-bit timer with an 8-bit prescaler.

The prescaler and timer each consist of a reload register and counter (refer to **Tables 14.7 to 14.10 the Specifications of Each Mode**).

Timer RB has timer RB primary and timer RB secondary as reload registers.

The count source for timer RB is the operating clock that regulates the timing of timer operations such as counting and reloading.

Figure 14.12 shows a Block Diagram of Timer RB. Figures 14.13 and 14.15 show the registers associated with timer RB.

Timer RB has four operation modes listed as follows:

- Timer mode:
- Programmable waveform generation mode:
- Programmable one-shot generation mode:
- Programmable wait one-shot generation mode:

The timer counts an internal count source (peripheral function clock or timer RA underflows).

The timer outputs pulses of a given width successively.

The timer outputs a one-shot pulse.

The timer outputs a delayed one-shot pulse.

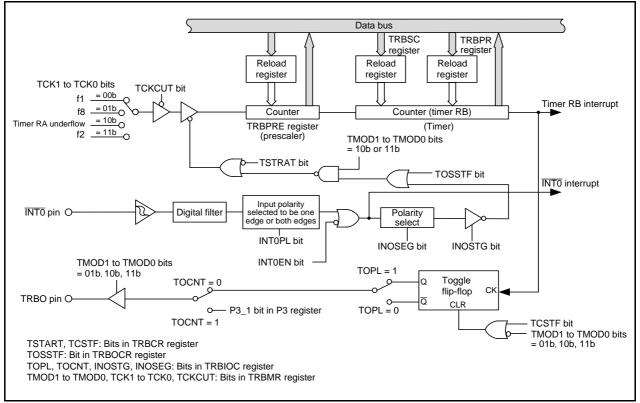


Figure 14.12 Block Diagram of Timer RB

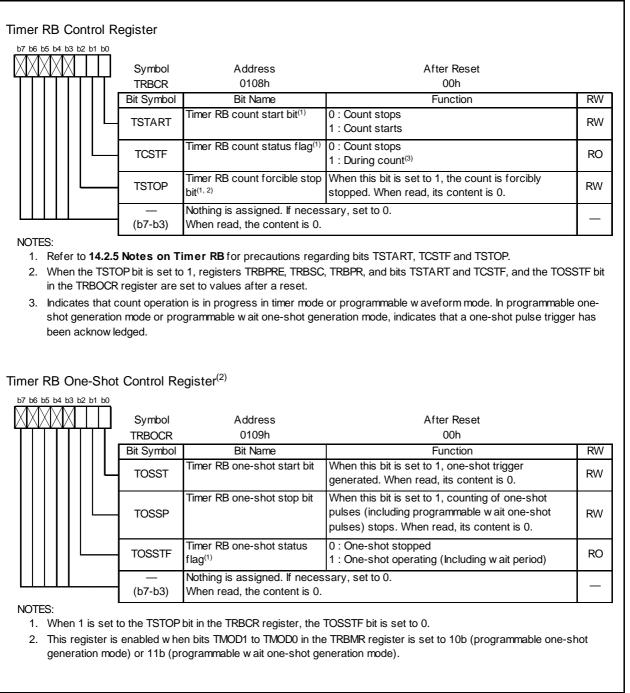
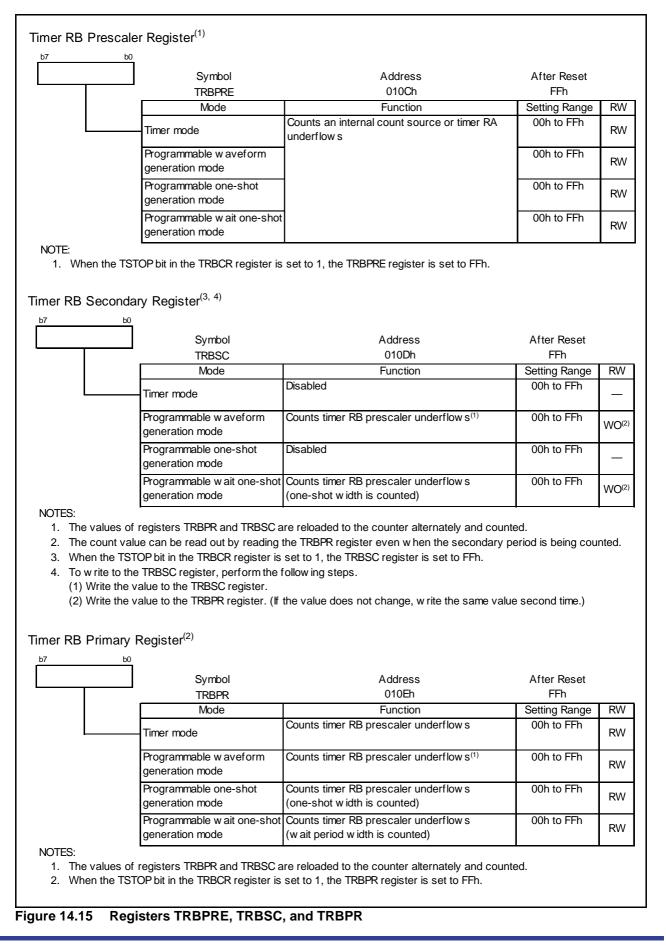



Figure 14.13 Registers TRBCR and TRBOCR

		Symbol	Address	After Reset	
		TRBIOC	010Ah	00h	
		Bit Symbol	Bit Name	Function	RW
		TOPL	Timer RB output level select bit	Function varies depending on operating mode.	RW
		TOCNT	Timer RB output sw itch bit		RW
		INOSTG	One-shot trigger control bit	-	RW
		INOSEG	One-shot trigger polarity select bit		RW
		 (b7-b4)	Nothing is assigned. If neces When read, the content is 0.		_
		Symbol TRBMR Bit Symbol	Address 010Bh Bit Name	After Reset 00h Function	RW
					RW
		TMOD0	select bits ⁽¹⁾	0 0 : Timer mode 0 1 : Programmable w aveform generation mode 1 0 : Programmable one-shot generation mode	RW
		TMOD1		1 1 : Programmable w ait one-shot generation mode	RW
		(b2)	Nothing is assigned. If neces When read, the content is 0.		_
		TWRC	Timer RB w rite control bit ⁽²⁾	0 : Write to reload register and counter 1 : Write to reload register only	RW
		TCK0	Timer RB count source select bits ⁽¹⁾	b5 b4 0 0 : f1 0 1 : f8	RW
		TCK1		1 0 : Timer RA underflow 1 1 : f2	RW
		(b6)	Nothing is assigned. If neces When read, the content is 0.	•	_
		TCKCUT	Timer RB count source cutoff bit ⁽¹⁾	0 : Provides count source 1 : Cuts off count source	RW
	-	10D1 and TM 0 (count stop		KCUT when both the TSTART and TCSTF bits in the T	RBCR

Figure 14.14 Registers TRBIOC and TRBMR

14.2.1 **Timer Mode**

In timer mode, a count source which is internally generated or timer RA underflows are counted (refer to Table 14.7 Timer Mode Specifications). Registers TRBOCR and TRBSC are not used in timer mode. Figure 14.16 shows TRBIOC Register in Timer Mode.

Table 14.7 Timer Mod	de Specifications			
Item	Specification			
Count sources	f1, f2, f8, timer RA underflow			
Count operations	 Decrement When the timer underflows, it reloads the reload register contents before the count continues (when timer RB underflows, the contents of timer RB primary reload register is reloaded). 			
Divide ratio	1/(n+1)(m+1) n: setting value in TRBPRE register, m: setting value in TRBPR register			
Count start condition	1 (count starts) is written to the TSTART bit in the TRBCR register.			
Count stop conditions	 0 (count stops) is written to the TSTART bit in the TRBCR register. 1 (count forcibly stop) is written to the TSTOP bit in the TRBCR register. 			
Interrupt request generation timing	When timer RB underflows [timer RB interrupt].			
TRBO pin function	Programmable I/O port			
INT0 pin function	Programmable I/O port or INT0 interrupt input			
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE.			
Write to timer	 When registers TRBPRE and TRBPR are written while the count is stopped, values are written to both the reload register and counter. When registers TRBPRE and TRBPR are written to while count operation is in progress: If the TWRC bit in the TRBMR register is set to 0, the value is written to both the reload register and the counter. If the TWRC bit is set to 1, the value is written to the reload register only. 			

T

I/O Contro b3 b2 b1 b0	ol Register			
0000	Symbol	Address	After Reset	
	TRBIOC Bit Symbol	010Ah Bit Name	00h Function	RW
	TOPL	Timer RB output level select bit		RW
	TOCNT	Timer RB output switch bit		RW
	INOSTG	One-shot trigger control bit		RW
	INOSEG	One-shot trigger polarity select bit		RW
	 (b7-b4)	Nothing is assigned. If neces When read, the content is 0.	sary, set to 0.	_

(Refer to 14.2.1.1 Timer Write Control during Count Operation.)

Figure 14.16 TRBIOC Register in Timer Mode

14.2.1.1 Timer Write Control during Count Operation

Timer RB has a prescaler and a timer (which counts the prescaler underflows). The prescaler and timer each consist of a reload register and a counter. In timer mode, the TWRC bit in the TRBMR register can be used to select whether writing to the prescaler or timer during count operation is performed to both the reload register and counter or only to the reload register.

However, values are transferred from the reload register to the counter of the prescaler in synchronization with the count source. In addition, values are transferred from the reload register to the counter of the timer in synchronization with prescaler underflows. Therefore, even if the TWRC bit is set for writing to both the reload register and counter, the counter value is not updated immediately after the WRITE instruction is executed. In addition, if the TWRC bit is set for writing to the reload register only, the synchronization of the writing will be shifted if the prescaler value changes. Figure 14.17 shows an Operating Example of Timer RB when Counter Value is Rewritten during Count Operation.

When the TWRC bit is s	et to 0 (write to reload register and c	ounter)		
	TRBPRE register and 25h to gister by a program. I			
Count source				
Reloads register of timer RB prescaler	After writing, the reload written with the first cour	nt source.	v value (01h)	
Counter of	Reload with the second count source	Reload on underflow		V
timer RB prescaler	06h 🚶 05h 🚶 04h 🚶 01h 🚶 00h	After writing, the reload re written on the first underfi		λ
Reloads register of timer RB	Previous value	X No	ew value (25h)	
		Reloz	ad on the second	
Counter of timer RB	03h	02h 2	25h 24h	Χ
IR bit in TRBIC register	The IR bit re	emains unchanged until unc I by a new value.	Jerflow	
Set 01h to the	et to 1 (write to reload register only) TRBPRE register and 25h to ister by a program.			
Reloads register of	After writing, the reload re written with the first count	source.		
timer RB prescaler	Previous value	New value (0	oad on	
Counter of timer RB prescaler	06h 🛛 05h 🖉 04h 🖉 03h 🖉 02h		erflow	
			After writing, the reloa written on the first und	lerflow.
Reloads register of timer RB	Previous value	Х	New val	ue (25h)
				Reload on underflow
Counter of timer RB	03h		02h 01h	00h 25h
IR bit in TRBIC register ()			
			the prescaler values are up nding the duration until time	
	er the following conditions. TCSTF in the TRBCR register are se	et to 1 (During count).	

Figure 14.17 Operating Example of Timer RB when Counter Value is Rewritten during Count Operation

14.2.2 Programmable Waveform Generation Mode

In programmable waveform generation mode, the signal output from the TRBO pin is inverted each time the counter underflows, while the values in registers TRBPR and TRBSC are counted alternately (refer to Table 14.8 Programmable Waveform Generation Mode Specifications). Counting starts by counting the setting value in the TRBPR register. The TRBOCR register is unused in this mode.

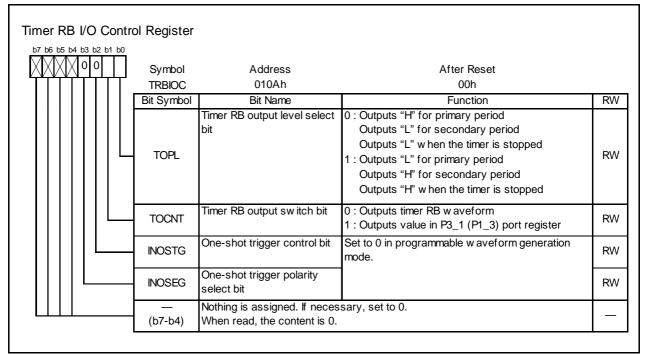

Figure 14.18 shows TRBIOC Register in Programmable Waveform Generation Mode. Figure 14.19 shows an Operating Example of Timer RB in Programmable Waveform Generation Mode.

Table 14.8	Programmable Waveform Generation Mode Specifications
------------	--

Item	Specification
Count sources	f1, f2, f8, timer RA underflow
Count operations	 Decrement When the timer underflows, it reloads the contents of the primary reload and secondary reload registers alternately before the count continues.
Width and period of output waveform	Primary period: (n+1)(m+1)/fi Secondary period: (n+1)(p+1)/fi Period: (n+1){(m+1)+(p+1)}/fi fi: Count source frequency n: Value set in TRBPRE register m: Value set in TRBPR register p: Value set in TRBSC register
Count start condition	1 (count start) is written to the TSTART bit in the TRBCR register.
Count stop conditions	 0 (count stop) is written to the TSTART bit in the TRBCR register. 1 (count forcibly stop) is written to the TSTOP bit in the TRBCR register.
Interrupt request generation timing	In half a cycle of the count source, after timer RB underflows during the secondary period (at the same time as the TRBO output change) [timer RB interrupt]
TRBO pin function	Programmable output port or pulse output
INT0 pin function	Programmable I/O port or INT0 interrupt input
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE ⁽¹⁾ .
Write to timer	 When registers TRBPRE, TRBSC, and TRBPR are written while the count is stopped, values are written to both the reload register and counter. When registers TRBPRE, TRBSC, and TRBPR are written to during count operation, values are written to the reload registers only.⁽²⁾
Select functions	 Output level select function The TOPL bit in the TRBIOC register selects the output level during primary and secondary periods. TRBO pin output switch function Timer RB pulse output or P3_1 latch output is selected by the TOCNT bit in the TRBIOC register.⁽³⁾

NOTES:

- 1. Even when counting the secondary period, the TRBPR register may be read.
- 2. The set values are reflected in the waveform output beginning with the following primary period after writing to the TRBPR register.
- 3. The value written to the TOCNT bit is enabled by the following.
 - When counting starts.
 - When a timer RB interrupt request is generated. The contents after the TOCNT bit is changed are reflected from the output of the following primary period.

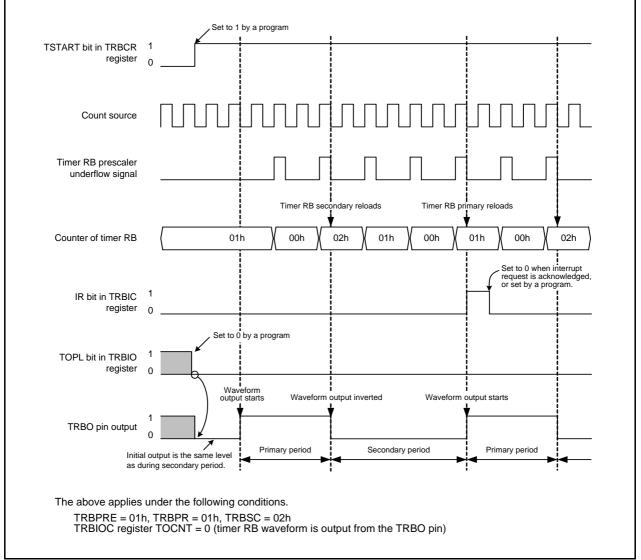
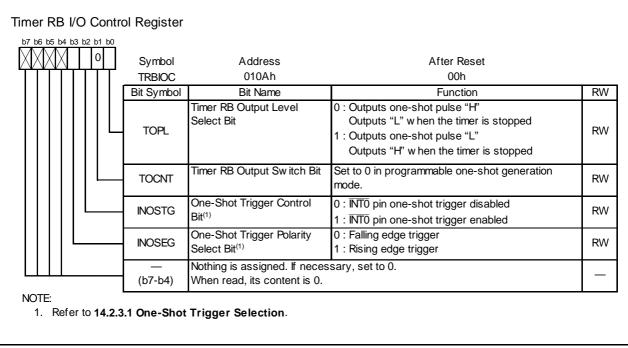


Figure 14.19 Operating Example of Timer RB in Programmable Waveform Generation Mode

14.2.3 Programmable One-shot Generation Mode

In programmable one-shot generation mode, a one-shot pulse is output from the TRBO pin by a program or an external trigger input (input to the INTO pin) (refer to **Table 14.9 Programmable One-Shot Generation Mode Specifications**). When a trigger is generated, the timer starts operating from the point only once for a given period equal to the set value in the TRBPR register. The TRBSC register is not used in this mode. Figure 14.20 shows TRBIOC Register in Programmable One-Shot Generation Mode. Figure 14.21 shows an Operating Example of Programmable One-Shot Generation Mode.


Table 14.9	Programmable One-Shot Generation Mode Specifications

Item	Specification
Count sources	f1, f2, f8, timer RA underflow
Count operations	 Decrement the setting value in the TRBPR register When the timer underflows, it reloads the contents of the reload register before the count completes and the TOSSTF bit is set to 0 (one-shot stops). When the count stops, the timer reloads the contents of the reload register before it stops.
One-shot pulse	(n+1)(m+1)/fi
output time	fi: Count source frequency,
	n: Setting value in TRBPRE register, m: Setting value in TRBPR register ⁽²⁾
Count start conditions	 The TSTART bit in the TRBCR register is set to 1 (count starts) and the next trigger is generated Set the TOSST bit in the TRBOCR register to 1 (one-shot starts) Input trigger to the INTO pin
Count stop conditions	 When reloading completes after timer RB underflows during primary period When the TOSSP bit in the TRBOCR register is set to 1 (one-shot stops) When the TSTART bit in the TRBCR register is set to 0 (stops counting) When the TSTOP bit in the TRBCR register is set to 1 (forcibly stops counting)
Interrupt request generation timing	In half a cycle of the count source, after the timer underflows (at the same time as the TRBO output ends) [timer RB interrupt]
TRBP pin function	Pulse output
INT0 pin functions	 When the INOSTG bit in the TRBIOC register is set to 0 (INT0 one-shot trigger disabled): programmable I/O port or INT0 interrupt input When the INOSTG bit in the TRBIOC register is set to 1 (INT0 one-shot trigger enabled): external trigger (INT0 interrupt input)
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE.
Write to timer	 When registers TRBPRE and TRBPR are written while the count is stopped, values are written to both the reload register and counter. When registers TRBPRE and TRBPR are written during the count, values are written to the reload register only (the data is transferred to the counter at the following reload)⁽¹⁾.
Select functions	 Output level select function The TOPL bit in the TRBIOC register selects the output level of the one-shot pulse waveform. One-shot trigger select function Refer to 14.2.3.1 One-Shot Trigger Selection.

NOTES:

1. The set value is reflected at the following one-shot pulse after writing to the TRBPR register.

2. Do not set both the TRBPRE and TRBPR registers to 00h.

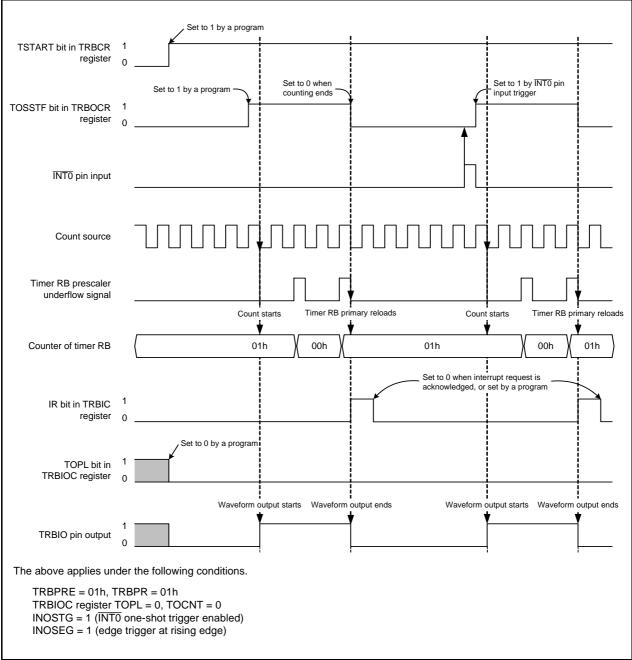


Figure 14.21 Operating Example of Programmable One-Shot Generation Mode

14.2.3.1 One-Shot Trigger Selection

In programmable one-shot generation mode and programmable wait one-shot generation mode, operation starts when a one-shot trigger is generated while the TCSTF bit in the TRBCR register is set to 1 (count starts). A one-shot trigger can be generated by either of the following causes:

- 1 is written to the TOSST bit in the TRBOCR register by a program.
- Trigger input from the $\overline{\text{INT0}}$ pin.

When a one-shot trigger occurs, the TOSSTF bit in the TRBOCR register is set to 1 (one-shot operation in progress) after one or two cycles of the count source have elapsed. Then, in programmable one-shot generation mode, count operation begins and one-shot waveform output starts. (In programmable wait one-shot generation mode, count operation starts for the wait period.) If a one-shot trigger occurs while the TOSSTF bit is set to 1, no retriggering occurs.

To use trigger input from the $\overline{INT0}$ pin, input the trigger after making the following settings:

- Set the PD4_5 bit in the PD4 register to 0 (input port).
- Select the \overline{INTO} digital filter with bits INTOF1 and INTOF0 in the INTF register.
- Select both edges or one edge with the INTOPL bit in INTEN register. If one edge is selected, further select falling or rising edge with the INOSEG bit in TRBIOC register.
- Set the INT0EN bit in the INTEN register to 0 (enabled).
- After completing the above, set the INOSTG bit in the TRBIOC register to 1 (\overline{INT} pin one-shot trigger enabled).

Note the following points with regard to generating interrupt requests by trigger input from the $\overline{INT0}$ pin.

- Processing to handle the interrupts is required. Refer to 12. Interrupts, for details.
- If one edge is selected, use the POL bit in the INTOIC register to select falling or rising edge. (The INOSEG bit in the TRBIOC register does not affect INTO interrupts).
- If a one-shot trigger occurs while the TOSSTF bit is set to 1, timer RB operation is not affected, but the value of the IR bit in the INT0IC register changes.

14.2.4 Programmable Wait One-Shot Generation Mode

In programmable wait one-shot generation mode, a one-shot pulse is output from the TRBO pin by a program or an external trigger input (input to the $\overline{INT0}$ pin) (refer to **Table 14.10 Programmable Wait One-Shot Generation Mode Specifications**). When a trigger is generated from that point, the timer outputs a pulse only once for a given length of time equal to the setting value in the TRBSC register after waiting for a given length of time equal to the SPR register.

Figure 14.22 shows TRBIOC Register in Programmable Wait One-Shot Generation Mode. Figure 14.23 shows an Operating Example of Programmable Wait One-Shot Generation Mode.

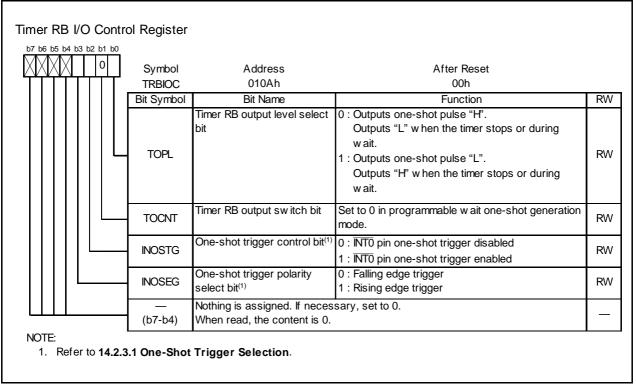

Item	Specification
Count sources	f1, f2, f8, timer RA underflow
Count operations	 Decrement the timer RB primary setting value. When a count of the timer RB primary underflows, the timer reloads the contents of timer RB secondary before the count continues. When a count of the timer RB secondary underflows, the timer reloads the contents of timer RB primary before the count completes and the TOSSTF bit is set to 0 (one-shot stops). When the count stops, the timer reloads the contents of the reload register before it stops.
Wait time	(n+1)(m+1)/fi fi: Count source frequency n: Value set in the TRBPRE register, m Value set in the TRBPR register ⁽²⁾
One-shot pulse output time	(n+1)(p+1)/fi fi: Count source frequency n: Value set in the TRBPRE register, p: Value set in the TRBSC register
Count start conditions	 The TSTART bit in the TRBCR register is set to 1 (count starts) and the next trigger is generated. Set the TOSST bit in the TRBOCR register to 1 (one-shot starts). Input trigger to the INT0 pin
Count stop conditions	 When reloading completes after timer RB underflows during secondary period. When the TOSSP bit in the TRBOCR register is set to 1 (one-shot stops). When the TSTART bit in the TRBCR register is set to 0 (starts counting). When the TSTOP bit in the TRBCR register is set to 1 (forcibly stops counting).
Interrupt request generation timing	In half a cycle of the count source after timer RB underflows during secondary period (complete at the same time as waveform output from the TRBO pin) [timer RB interrupt].
TRBO pin function	Pulse output
INT0 pin functions	 When the INOSTG bit in the TRBIOC register is set to 0 (INT0 one-shot trigger disabled): programmable I/O port or INT0 interrupt input When the INOSTG bit in the TRBIOC register is set to 1 (INT0 one-shot trigger enabled): external trigger (INT0 interrupt input)
Read from timer	The count value can be read out by reading registers TRBPR and TRBPRE.
Write to timer	 When registers TRBPRE, TRBSC, and TRBPR are written while the count stops, values are written to both the reload register and counter. When registers TRBPRE, TRBSC, and TRBPR are written to during count operation, values are written to the reload registers only.⁽¹⁾
Select functions	 Output level select function The TOPL bit in the TRBIOC register selects the output level of the one-shot pulse waveform. One-shot trigger select function Refer to 14.2.3.1 One-Shot Trigger Selection.

Table 14.10 Programmable Wait One-Shot Generation Mode Specifications

NOTES:

1. The set value is reflected at the following one-shot pulse after writing to registers TRBSC and TRBPR.

2. Do not set both the TRBPRE and TRBPR registers to 00h.

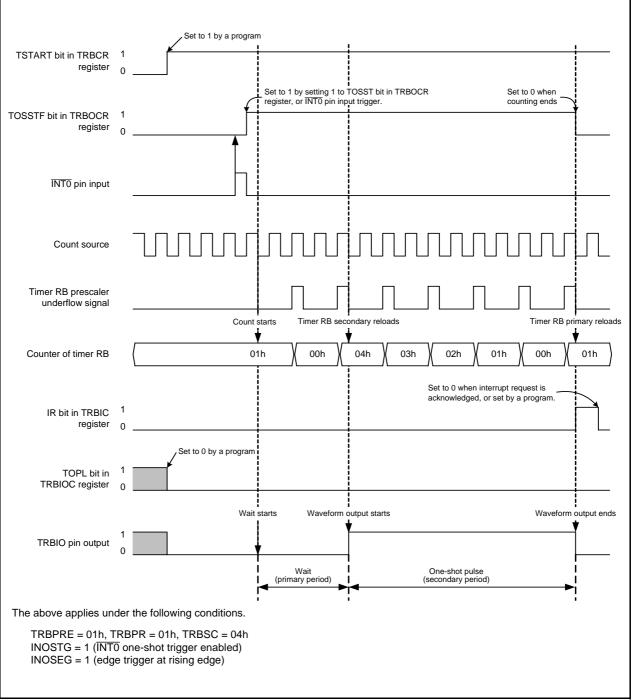


Figure 14.23 Operating Example of Programmable Wait One-Shot Generation Mode

14.2.5 Notes on Timer RB

- Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the count starts.
- Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In programmable one-shot generation mode and programmable wait one-shot generation mode, when setting the TSTART bit in the TRBCR register to 0, 0 (stops counting) or setting the TOSSP bit in the TRBOCR register to 1 (stops one-shot), the timer reloads the value of reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode, read the timer count value before the timer stops.
- The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer $RB^{(1)}$ other than the TCSTF bit. Timer RB starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count). The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RB counting is stopped when the TCSTF bit is set to 0. During this time, do not access registers associated with timer $RB^{(1)}$ other than the TCSTF bit.

NOTE:

- 1. Registers associated with timer RB: TRBCR, TRBOCR, TRBIOC, TRBMR, TRBPRE, TRBSC, and TRBPR.
- If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
- If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be set to either 0 or 1 depending on the content state. Likewise, if the TOSSTF bit is written to 1 during the period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit may be set to either 0 or 1.

14.2.5.1 Timer mode

The following workaround should be performed in timer mode.

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.

14.2.5.2 **Programmable waveform generation mode**

The following three workarounds should be performed in programmable waveform generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.
- (2) To change registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), synchronize the TRBO output cycle using a timer RB interrupt, etc. This operation should be preformed only once in the same output cycle. Also, make sure that writing to the TRBPR register does not occur during period A shown in Figures 14.24 and 14.25.

The following shows the detailed workaround examples.

• Workaround example (a):

As shown in Figure 14.24, write to registers TRBSC and TRBPR in the timer RB interrupt routine. These write operations must be completed by the beginning of period A.

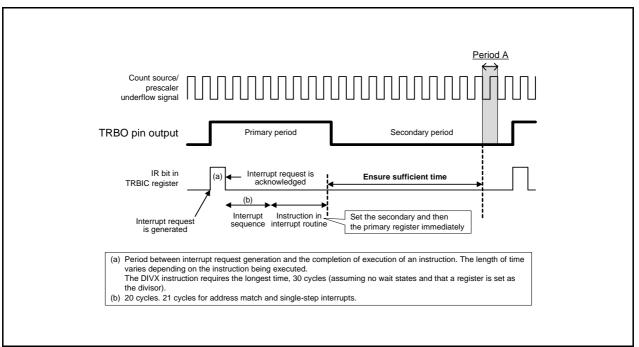


Figure 14.24 Workaround Example (a) When Timer RB interrupt is Used

• Workaround example (b):

As shown in Figure 14.25 detect the start of the primary period by the TRBO pin output level and write to registers TRBSC and TRBPR. These write operations must be completed by the beginning of period A. If the port register's bit value is read after the port direction register's bit corresponding to the TRBO pin is set to 0 (input mode), the read value indicates the TRBO pin output value.

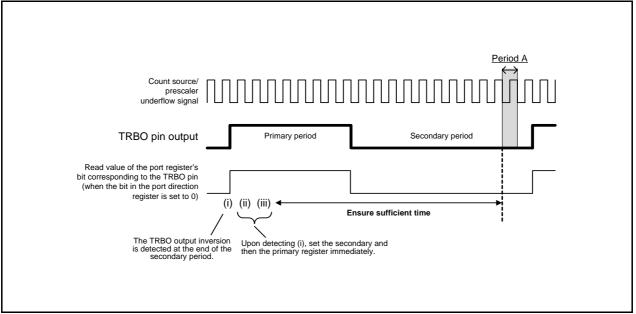


Figure 14.25 Workaround Example (b) When TRBO Pin Output Value is Read

(3) To stop the timer counting in the primary period, use the TSTOP bit in the TRBCR register. In this case, registers TRBPRE and TRBPR are initialized and their values are set to the values after reset.

14.2.5.3 Programmable one-shot generation mode

The following two workarounds should be performed in programmable one-shot generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.
- (2) Do not set both the TRBPRE and TRBPR registers to 00h.

14.2.5.4 Programmable wait one-shot generation mode

The following three workarounds should be performed in programmable wait one-shot generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.
- (2) Do not set both the TRBPRE and TRBPR registers to 00h.
- (3) Set registers TRBSC and TRBPR using the following procedure.
 - (a) To use "INT0 pin one-shot trigger enabled" as the count start condition Set the TRBSC register and then the TRBPR register. At this time, after writing to the TRBPR register, allow an interval of 0.5 or more cycles of the count source before trigger input from the INT0 pin.
 - (b) To use "writing 1 to TOSST bit" as the start condition
 - Set the TRBSC register, the TRBPR register, and then TOSST bit. At this time, after writing to the TRBPR register, allow an interval of 0.5 or more cycles of the count source before writing to the TOSST bit.

14.3 Timer RC

14.3.1 Overview

Timer RC is a 16-bit timer with four I/O pins. Timer RC uses either f1 or fOCO40M as its operation clock. Table 14.11 lists the Timer RC Operation Clock.

Table 14.11 Timer RC Operation Clock

Condition	Timer RC Operation Clock
Count source is f1, f2, f4, f8, f32, or TRCCLK input (bits TCK2 to TCK0 in	f1
TRCCR1 register are set to a value from 000b to 101b)	
Count source is fOCO40M (bits TCK2 to TCK0 in TRCCR1 register are set	fOCO40M
to 110b)	

Table 14.12 lists the Timer RC I/O Pins, and Figure 14.26 shows a Block Diagram of Timer RC. Timer RC has three modes.

• Timer mode

- Input capture function	The counter value is captured to a register, using an external signal as the trigger.
- Output compare function	Matches between the counter and register values are detected. (Pin output state
	changes when a match is detected.)
The following two modes use	the output compare function.
• PWM mode	Pulses of a given width are output continuously.
• PWM2 mode	A one-shot waveform or PWM waveform is output following the trigger after
	the wait time has elapsed.

Input capture function, output compare function, and PWM mode settings may be specified independently for each pin.

In PWM2 mode waveforms are output based on a combination of the counter or the register.

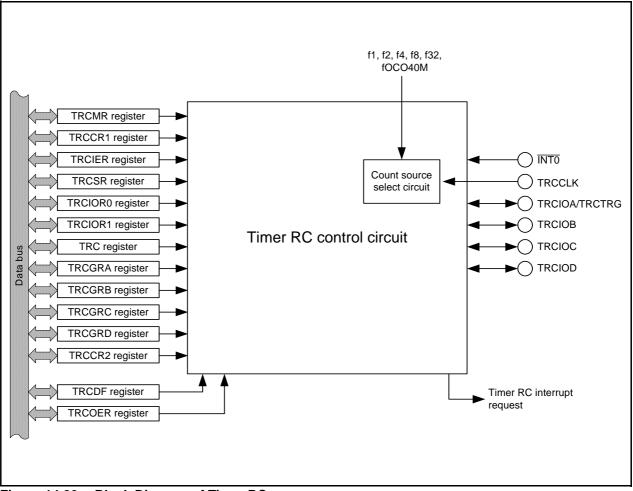


Figure 14.26 Block Diagram of Timer RC

Pin Name	I/O	Function
TRCIOA(P1_1)	I/O	Function differs according to the mode. Refer to descriptions
TRCIOB(P1_2)		of individual modes for details
TRCIOC(P5_3 or P3_4) ⁽¹⁾		
TRCIOD(P5_4 or P3_5) ⁽¹⁾		
TRCCLK(P3_3)	Input	External clock input
TRCTRG(P1_1)	Input	PWM2 mode external trigger input

NOTE:

 The pins used for TRCIOC and TRCIOD are selectable. Refer to the description of the bits TRCIOCSEL and TRCIODSEL in the PINSR3 register in Figure 7.9 Registers PINSR2 and PINSR3 for details.

14.3.2 Registers Associated with Timer RC

Table 14.13 lists the Registers Associated with Timer RC. Figures 14.27 to 14.36 show details of the registers associated with timer RC.

		Mode				
Address	Symbol	Tir Input Capture	ner Output Compare	PWM	PWM2	Related Information
		Function	Function			
0120h	TRCMR	Valid	Valid	Valid	Valid	Timer RC mode register Figure 14.27 TRCMR Register
0121h	TRCCR1	Valid	Valid	Valid	Valid	Timer RC control register 1 Figure 14.28 TRCCR1 Register Figure 14.49 TRCCR1 Register in Output Compare Function Figure 14.52 TRCCR1 Register in PWM Mode Figure 14.56 TRCCR1 Register in PWM2 Mode
0122h	TRCIER	Valid	Valid	Valid	Valid	Timer RC interrupt enable register Figure 14.29 TRCIER Register
0123h	TRCSR	Valid	Valid	Valid	Valid	Timer RC status register Figure 14.30 TRCSR Register
0124h	TRCIOR0	Valid	Valid	_	-	Timer RC I/O control register 0, timer RC I/O control register 1 Figure 14.36 Registers TRCIOR0 and TRCIOR1 Figure 14.43 TRCIOR0 Register in Input Capture Function
0125h	TRCIOR1					Figure 14.44 TRCIOR1 Register in Input Capture Function Figure 14.47 TRCIOR0 Register in Output Compare Function Figure 14.48 TRCIOR1 Register in Output Compare Function
0126h 0127h	TRC	Valid	Valid	Valid	Valid	Timer RC counter Figure 14.31 TRC Register
0128h 0129h	TRCGRA	Valid	Valid	Valid	Valid	Timer RC general registers A, B, C, and D Figure 14.32 Registers TRCGRA, TRCGRB,
012Ah 012Bh	TRCGRB					TRCGRC, and TRCGRD
012Ch 012Dh	TRCGRC					
012Eh 012Fh	TRCGRD					
0130h	TRCCR2	_	_	_	Valid	Timer RC control register 2 Figure 14.33 TRCCR2 Register
0131h	TRCDF	Valid	_	_	Valid	Timer RC digital filter function select register Figure 14.34 TRCDF Register
0132h	TRCOER	-	Valid	Valid	Valid	Timer RC output mask enable register Figure 14.35 TRCOER Register

Table 14.13 Registers Associated with Timer RC

– : Invalid

b6 b5 b4 b	b3 b2 b1 b0	Symbol	Address	After Reset	
┹┙┦┨		TRCMR	0120h	01001000b	
		Bit Symbol	Bit Name	Function	RW
	L	PWMB	PWM mode of TRCIOB select bit ⁽²⁾	0 : Timer mode 1 : PWM mode	RW
		PWMC	PWM mode of TRCIOC select bit ⁽²⁾	0 : Timer mode 1 : PWM mode	RW
		PWMD	PWM mode of TRCIOD select bit ⁽²⁾	0 : Timer mode 1 : PWM mode	RW
		PWM2	PWM2 mode select bit	0 : PWM 2 mode 1 : Timer mode or PWM mode	RW
		BFC	TRCGRC register function select bit ⁽³⁾	0 : General register 1 : Buffer register of TRCGRA register	RW
		BFD	TRCGRD register function select bit	0 : General register 1 : Buffer register of TRCGRB register	RW
		 (b6)	Nothing is assigned. If necessary, When read, the content is 1.	set to 0.	-
		TSTART	TRC count start bit	0 : Count stops 1 : Count starts	RW

1. For notes on PWM2 mode, refer to 14.3.9.5 TRCMR Register in PWM2 Mode.

2. These bits are enabled when the PWM2 bit is set to 1 (timer mode or PWM mode).

3. Set the BFC bit to 0 (general register) in PWM2 mode.

Figure 14.27 TRCMR Register

o7 b6 b5 b4	b3 b2 b1 b0				
		Symbol	Address	After Reset	
		TRCCR1	0121h	00h	
		Bit Symbol	Bit Name	Function	RW
		ΤΟΑ	TRCIOA output level select bit ⁽¹⁾	Function varies according to the operating mode (function). ⁽²⁾	RW
		ТОВ	TRCIOB output level select bit ⁽¹⁾		RW
		тос	TRCIOC output level select bit ⁽¹⁾		RW
		TOD	TRCIOD output level select bit ⁽¹⁾		RW
		тско	Count source select bits ⁽¹⁾	^{b6 b5 b4} 0 0 0:f1 0 0 1:f2	RW
		TCK1		0 1 0:f4 0 1 1:f8 1 0 0:f32	RW
		TCK2		 1 0 1 : TRCCLK input rising edge 1 0 : fOCO40M 1 1 : Do not set. 	RW
		CCLR	TRC counter clear select bit ^(2, 3)	 0 : Disable clear (free-running operation) 1 : Clear by compare match in the TRCGRA register 	RW

2. Bits CCLR, TOA, TOB, TOC and TOD are disabled for the input capture function of the timer mode.

3. The TRC counter performs free-running operation for the input capture function of the timer mode independent of the CCLR bit setting.

Figure 14.28 TRCCR1 Register

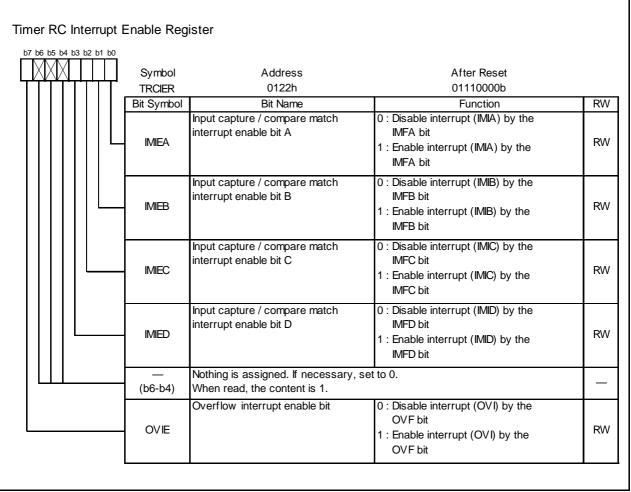
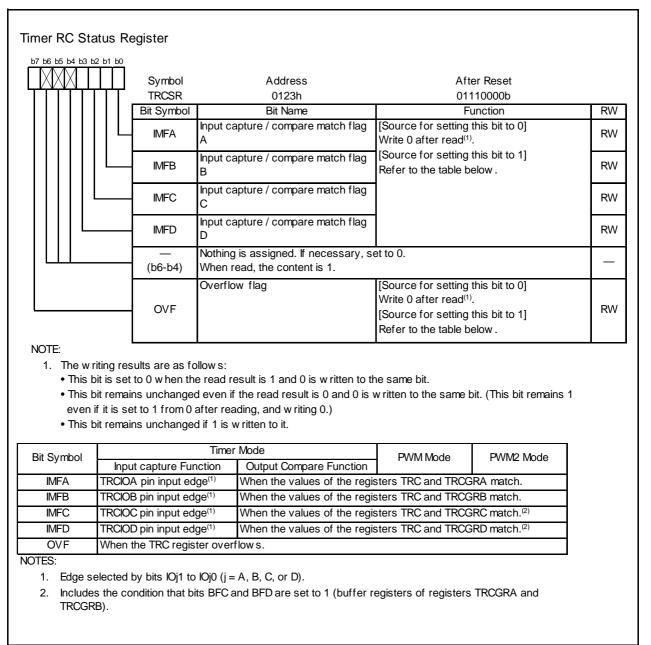



Figure 14.29 TRCIER Register

Figure 14.30 TRCSR Register

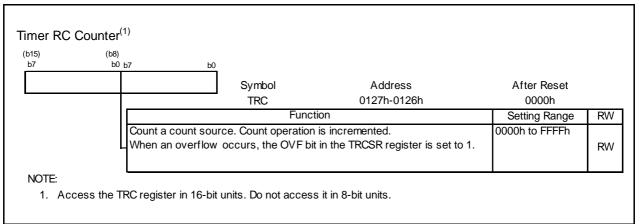


Figure 14.31 TRC Register

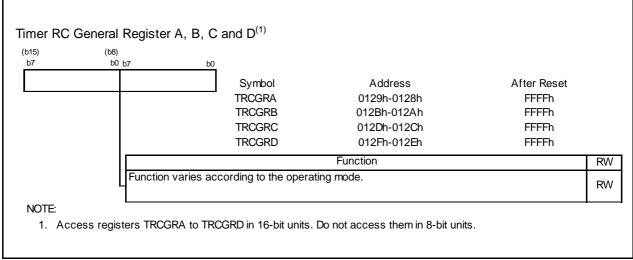


Figure 14.32 Registers TRCGRA, TRCGRB, TRCGRC, and TRCGRD

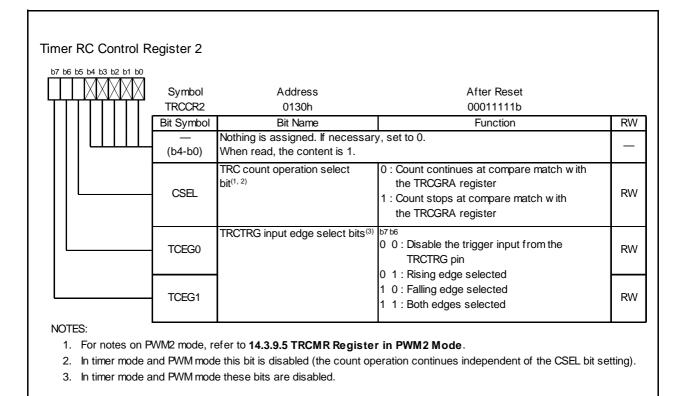


Figure 14.33 TRCCR2 Register

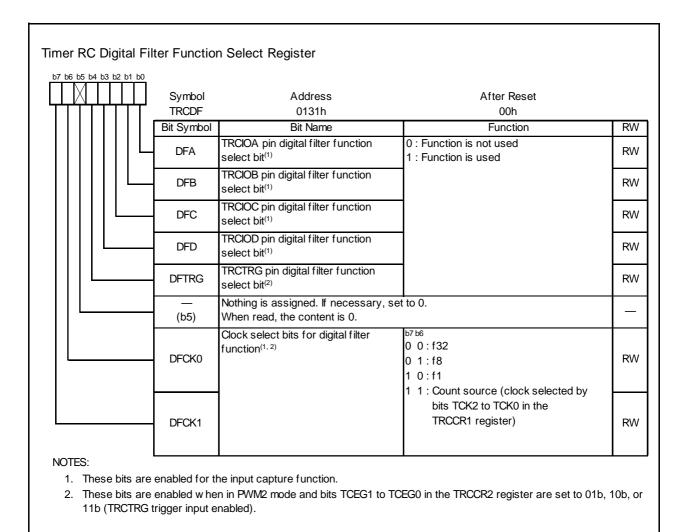


Figure 14.34 TRCDF Register

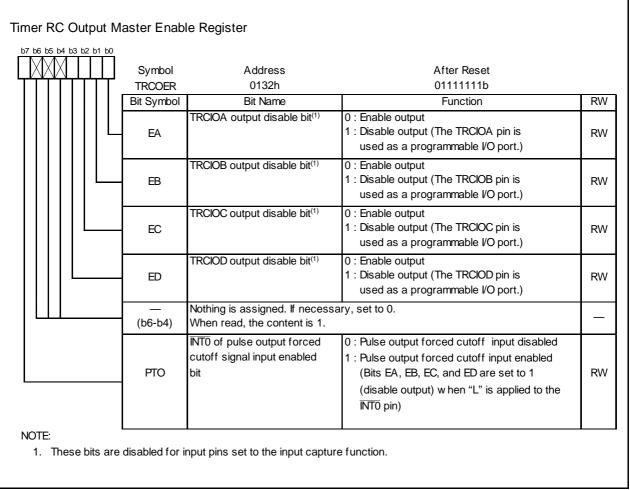
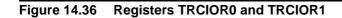


Figure 14.35 TRCOER Register

Timer RC I/	O Conti	rol Register	0 ⁽¹⁾		
b7 b6 b5 b4 b	3 b2 b1 b0	Symbol TRCIOR0	Address 0124h	After Reset 10001000b	
		Bit Symbol	Bit Name	Function	RW
		IOA0	TRCGRA control bits	Function varies according to the operating mode	RW
		IOA1		(function).	RW
		IOA2	TRCGRA mode select bit ⁽²⁾	0 : Output compare function 1 : Input capture function	RW
		IOA3	TRCGRA input capture input sw itch bit ⁽⁴⁾	0 : fOCO128 signal 1 : TRCIOA pin input	RW
		IOB0	TRCGRB control bits	Function varies according to the operating mode	RW
		IOB1		(function).	RW
		IOB2	TRCGRB mode select bit ⁽³⁾	0 : Output compare function 1 : Input capture function	RW
		(b7)	Nothing is assigned. If necessa When read, the content is 1.	ary, set to 0.	—

NOTES:


- 1. The TRCIOR0 register is enabled in timer mode. It is disabled in modes PWM and PWM2.
- 2. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
- 3. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.
- 4. The IOA3 bit is enabled when the IOA2 bit is set to 1 (input capture function).

Timer RC I/O Control Register 1⁽¹⁾

b7	b6 b	5 b4	b3 b2	b1 b0	0				
Д		Ц	X TT	Ц		Symbol TRCIOR1	Address 0125h	After Reset 10001000b	
					Г	Bit Symbol	Bit Name	Function	RW
					ŀ	IOC0	TRCGRC control bits	Function varies according to the operating mode	RW
					-		The Give control bits	с i с	
				L	_	IOC1		(function).	RW
			IOC2	TRCGRC mode select bit ⁽²⁾	0 : Output compare function 1 : Input capture function	RW			
			_	(b3)	Nothing is assigned. If necess When read, the content is 1.	sary, set to 0.	_		
					_	IOD0	TRCGRD control bits	Function varies according to the operating mode	RW
	ןנ				_	IOD1		(function).	RW
					_	IOD2	TRCGRD mode select bit ⁽³⁾	0 : Output compare function 1 : Input capture function	RW
							Nothing is assigned. If necess	sary, set to 0.	_
	(b7) When read, the content is 1.								

NOTES:

- 1. The TRCIOR1 register is enabled in timer mode. It is disabled in modes PWM and PWM2.
- 2. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
- 3. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

14.3.3 Common Items for Multiple Modes

14.3.3.1 Count Source

The method of selecting the count source is common to all modes. Table 14.14 lists the Count Source Selection, and Figure 14.37 shows a Count Source Block Diagram.

Table 14.14 Count Source Selection

Count Source	Selection Method
f1, f2, f4, f8, f32	Count source selected using bits TCK2 to TCK0 in TRCCR1 register
fOCO40M	FRA00 bit in FRA0 register set to 1 (high-speed on-chip oscillator on) and bits TCK2 to TCK0 in TRCCR1 register are set to 110b (fOCO40M)
	Bits TCK2 to TCK0 in TRCCR1 register are set to 101b (count source is rising edge of external clock) and PD3_3 bit in PD3 register is set to 0 (input mode)

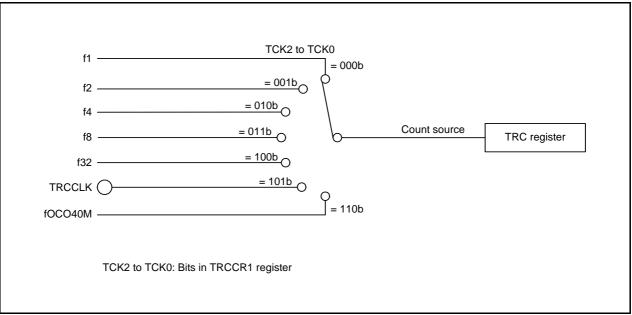


Figure 14.37 Count Source Block Diagram

The pulse width of the external clock input to the TRCCLK pin should be three cycles or more of the timer RC operation clock (see **Table 14.11 Timer RC Operation Clock**).

To select fOCO40M as the count source, set the FRA00 bit in the FRA0 register set to 1 (high-speed on-chip oscillator on), and then set bits TCK2 to TCK0 in the TRCCR1 register to 110b (fOCO40M).

14.3.3.2 Buffer Operation

Bits BFC and BFD in the TRCMR register are used to select the TRCGRC or TRCGRD register as the buffer register for the TRCGRA or TRCGRB register.

- Buffer register for TRCGRA register: TRCGRC register
- Buffer register for TRCGRB register: TRCGRD register

Buffer operation differs depending on the mode.

Table 14.15 lists the Buffer Operation in Each Mode, Figure 14.38 shows the Buffer Operation for Input Capture Function, and Figure 14.39 shows the Buffer Operation for Output Compare Function.

Function, Mode	Transfer Timing	Transfer Destination Register
Input capture function	Input capture signal input	Contents of TRCGRA (TRCGRB) register are transferred to buffer register
Output compare function PWM mode	register and TRCGRA (TRCGRB)	Contents of buffer register are transferred to TRCGRA (TRCGRB)
PWM2 mode	 register Compare match between TRC register and TRCGRA register TRCTRG pin trigger input 	register Contents of buffer register (TRCGRD) are transferred to TRCGRB register

Table 14.15 Buffer Operation in Each Mode

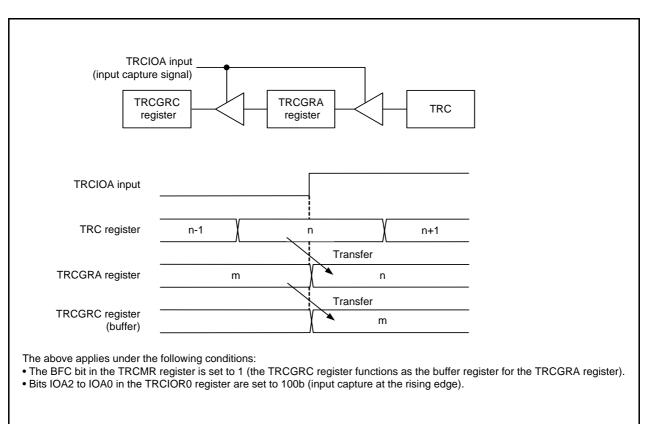


Figure 14.38 Buffer Operation for Input Capture Function

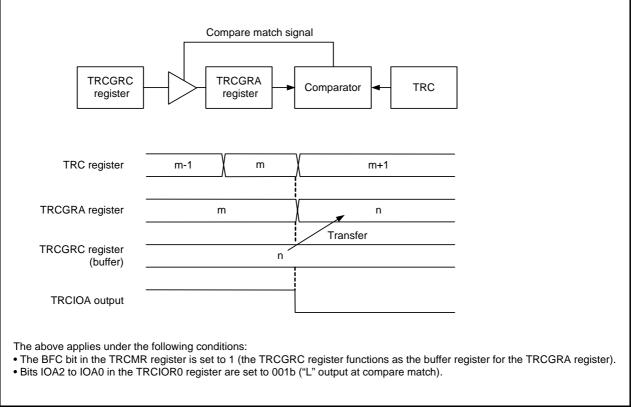
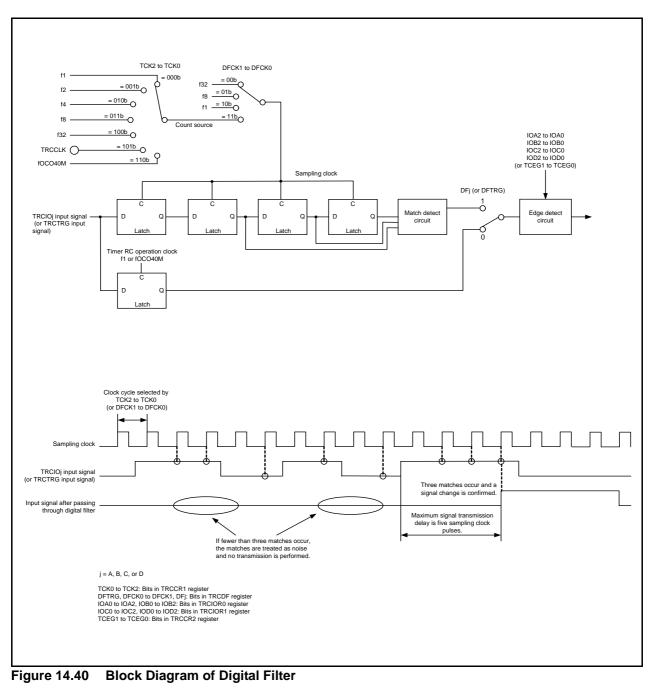


Figure 14.39 Buffer Operation for Output Compare Function

Make the following settings in timer mode.


- To use the TRCGRC register as the buffer register for the TRCGRA register:
 - Set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.
- To use the TRCGRD register as the buffer register for the TRCGRB register:
- Set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

The output compare function, PWM mode, or PWM2 mode, and the TRCGRC or TRCGRD register is functioning as a buffer register, the IMFC bit or IMFD bit in the TRCSR register is set to 1 when a compare match with the TRC register occurs.

The input capture function and the TRCGRC register or TRCGRD register is functioning as a buffer register, the IMFC bit or IMFD bit in the TRCSR register is set to 1 at the input edge of a signal input to the TRCIOC pin or TRCIOD pin.

14.3.3.3 Digital Filter

The input to TRCTRG or TRCIOj (j = A, B, C, or D) is sampled, and the level is considered to be determined when three matches occur. The digital filter function and sampling clock are selected using the TRCDF register. Figure 14.40 shows a Block Diagram of Digital Filter.

14.3.3.4 Forced Cutoff of Pulse Output

When using the timer mode's output compare function, the PWM mode, or the PWM2 mode, pulse output from the TRCIOj (j = A, B, C, or D) output pin can be forcibly cut off and the TRCIOj pin set to function as a programmable I/O port by means of input to the $\overline{INT0}$ pin.

A pin used for output by the timer mode's output compare function, the PWM mode, or the PWM2 mode can be set to function as the timer RC output pin by setting the Ej bit in the TRCOER register to 0 (timer RC output enabled). If "L" is input to the INTO pin while the PTO bit in the TRCOER register is set to 1 (pulse output forced cutoff signal input INTO enabled), bits EA, EB, EC, and ED in the TRCOER register are all set to 1 (timer RC output disabled, TRCIOj output pin functions as the programmable I/O port). When one or two cycles of the timer RC operation clock after "L" input to the INTO pin (refer to **Table 14.11 Timer RC Operation Clock**) has elapsed, the TRCIOj output pin becomes a programmable I/O port.

Make the following settings to use this function.

- Set the pin state following forced cutoff of pulse output (high impedance (input), "L" output, or "H" output). (Refer to **7. Programmable I/O Ports**.)
- Set the INT0EN bit to 1 (INT0 input enabled) and the INT0PL bit to 0 (one edge) in the INTEN register.
- Set the PD4_5 bit in the PD4 register to 0 (input mode).
- Select the INTO digital filter by means of bits INTOF1 to INTOF0 in the INTF register.
- Set the PTO bit in the TRCOER register to 1 (pulse output forced cutoff signal input INTO enabled).

The IR bit in the INTOIC register is set to 1 (interrupt request) in accordance with the setting of the POL bit and a change in the $\overline{\text{INTO}}$ pin input (refer to **12.6 Notes on Interrupts**). For details on interrupts, refer to **12. Interrupts**.

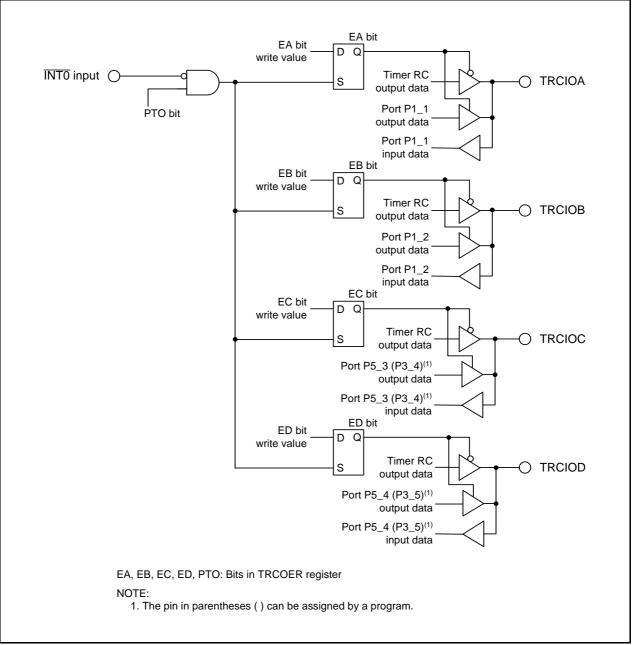


Figure 14.41 Forced Cutoff of Pulse Output

14.3.4 Timer Mode (Input Capture Function)

This function measures the width or period of an external signal. An external signal input to the TRCIOj (j = A, B, C, or D) pin acts as a trigger for transferring the contents of the TRC register (counter) to the TRCGRj register (input capture). The input capture function, or any other mode or function, can be selected for each individual pin.

The TRCGRA register can also select fOCO128 signal as input-capture trigger input.

Table 14.16 lists the Specifications of Input Capture Function, Figure 14.42 shows a Block Diagram of Input Capture Function, Figures 14.43 and 14.44 show registers associated with the input capture function, Table 14.17 lists the Functions of TRCGRj Register when Using Input Capture Function, and Figure 14.45 shows an Operating Example of Input Capture Function.

Item	Specification
Count source	f1, f2, f4, f8, f32, fOCO40M, or external signal (rising edge) input to
Count operation	Increment
Count period	1/fk x 65,536 fk: Count source frequency
Count start condition	1 (count starts) is written to the TSTART bit in the TRCMR register.
Count stop condition	0 (count stops) is written to the TSTART bit in the TRCMR register.
	The TRC register retains a value before count stops.
Interrupt request generation timing	 Input capture (valid edge of TRCIOj input or fOCO128 signal edge) The TRC register overflows.
TRCIOA, TRCIOB, TRCIOC,	Programmable I/O port or input capture input (selectable individually by
and TRCIOD pin functions	pin)
INT0 pin function	Programmable I/O port or INT0 interrupt input
Read from timer	The count value can be read by reading TRC register.
Write to timer	The TRC register can be written to.
Select functions	Input capture input pin select
	One or more of pins TRCIOA, TRCIOB, TRCIOC, and TRCIOD
	Input capture input valid edge selected
	Rising edge, falling edge, or both rising and falling edges
	• Buffer operation (Refer to 14.3.3.2 Buffer Operation.)
	Digital filter (Refer to 14.3.3.3 Digital Filter.)
	Input-capture trigger selected
	fOCO128 can be selected for input-capture trigger input of the
	TRCGRA register.

Table 14.16 Specifications of Input Capture Function

j = A, B, C, or D

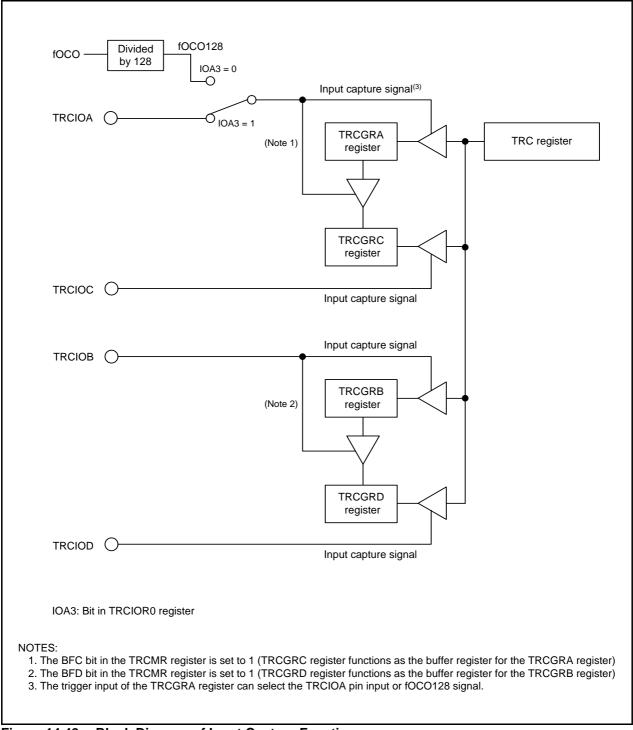
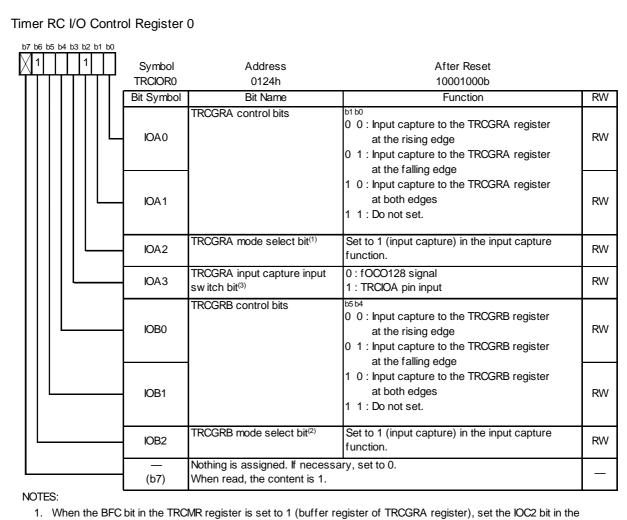
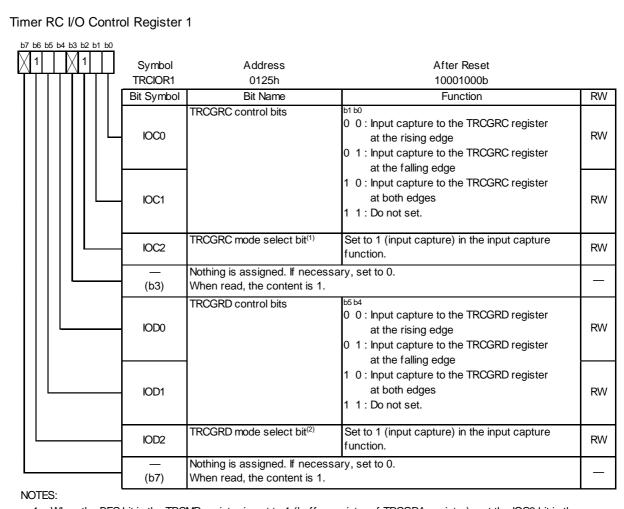



Figure 14.42 Block Diagram of Input Capture Function



 When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

3. The IOA3 bit is enabled when the IOA2 bit is set to 1 (input capture function).

Figure 14.43 TRCIOR0 Register in Input Capture Function

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

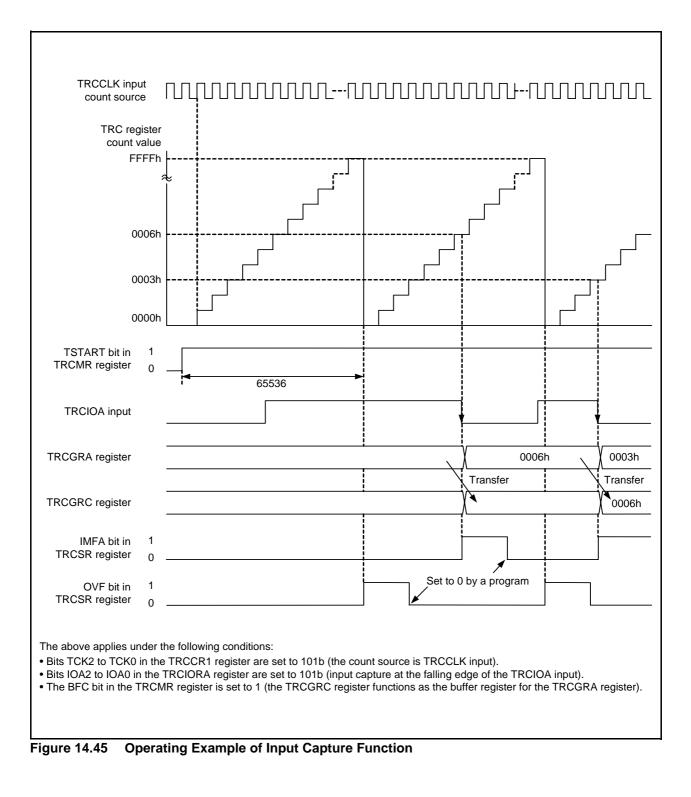

Figure 14.44 TRCIOR1 Register in Input Capture Function

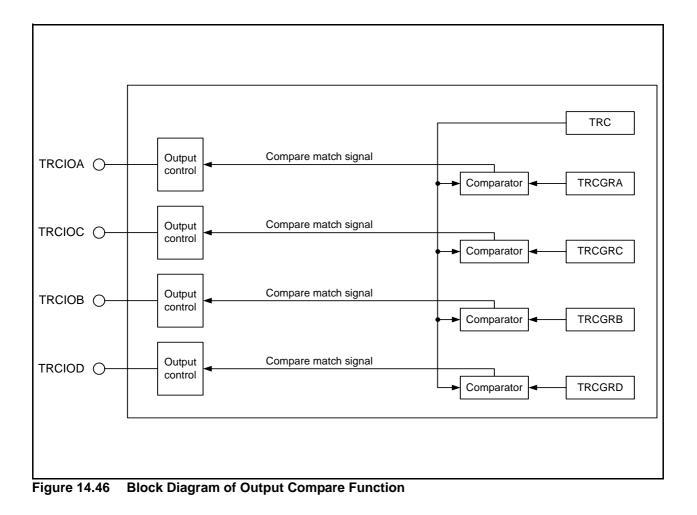
Table 14.17 Functions of TRCGRj Register when Using Input Capture Function

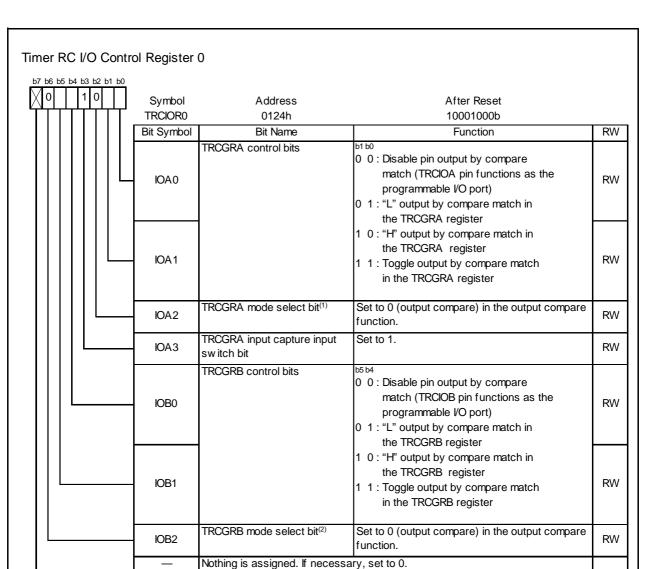
Register	Setting	Register Function	Input Capture Input Pin
TRCGRA	-	General register. Can be used to read the TRC register value	TRCIOA
TRCGRB		at input capture.	TRCIOB
TRCGRC	BFC = 0	General register. Can be used to read the TRC register value	TRCIOC
TRCGRD	BFD = 0	at input capture.	TRCIOD
TRCGRC	BFC = 1	Buffer registers. Can be used to hold transferred value from	TRCIOA
TRCGRD	BFD = 1	the general register. (Refer to 14.3.3.2 Buffer Operation.)	TRCIOB

j = A, B, C, or D

BFC, BFD: Bits in TRCMR register

14.3.5 Timer Mode (Output Compare Function)


This function detects when the contents of the TRC register (counter) and the TRCGRj register (j = A, B, C, or D) match (compare match). When a match occurs a signal is output from the TRCIOj pin at a given level. The output compare function, or other mode or function, can be selected for each individual pin.

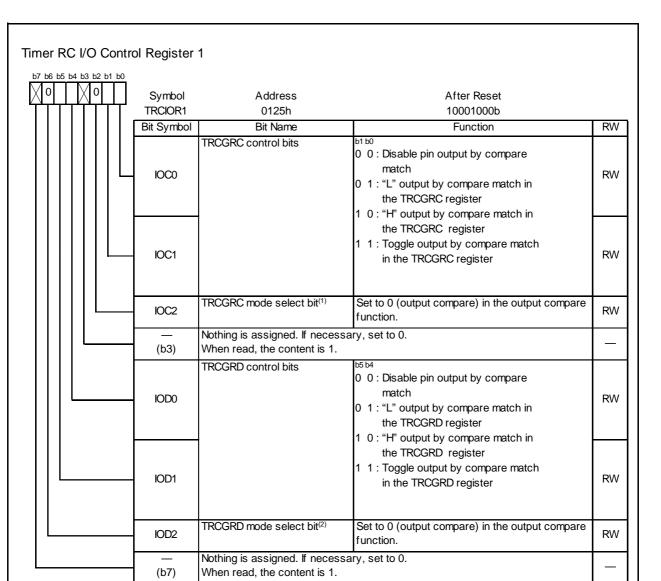

Table 14.18 lists the Specifications of Output Compare Function, Figure 14.46 shows a Block Diagram of Output Compare Function, Figures 14.47 to 14.49 show registers associated with the output compare function, Table 14.19 lists the Functions of TRCGRj Register when Using Output Compare Function, and Figure 14.50 shows an Operating Example of Output Compare Function.

Specification
f1, f2, f4, f8, f32, fOCO40M, or external signal (rising edge) input to TRCCLK pin
Increment
 The CCLR bit in the TRCCR1 register is set to 0 (free running operation): 1/fk × 65,536 fk: Count source frequency The CCLR bit in the TRCCR1 register is set to 1 (TRC register set to 0000h at TRCGRA compare match): 1/fk × (n + 1) n: TRCGRA register setting value
Compare match
1 (count starts) is written to the TSTART bit in the TRCMR register.
0 (count stops) is written to the TSTART bit in the TRCMR register. The output compare output pin retains output level before count stops, the TRC register retains a value before count stops.
Compare match (contents of registers TRC and TRCGRj match)The TRC register overflows.
Programmable I/O port or output compare output (selectable individually by pin)
Programmable I/O port, pulse output forced cutoff signal input, or \overline{INTO} interrupt input
The count value can be read by reading the TRC register.
The TRC register can be written to.
 Output compare output pin selected One or more of pins TRCIOA, TRCIOB, TRCIOC, and TRCIOD Compare match output level select "L" output, "H" output, or output level inverted Initial output level select Sets output level for period from count start to compare match Timing for clearing the TRC register to 0000h Overflow or compare match with the TRCGRA register Buffer operation (Refer to 14.3.3.2 Buffer Operation.) Pulse output forced cutoff signal input (Refer to 14.3.3.4 Forced Cutoff of Pulse Output.) Can be used as an internal timer by disabling timer RC output

Table 14.18	Specifications of Output Compare Function

j = A, B, C, or D

NOTES:

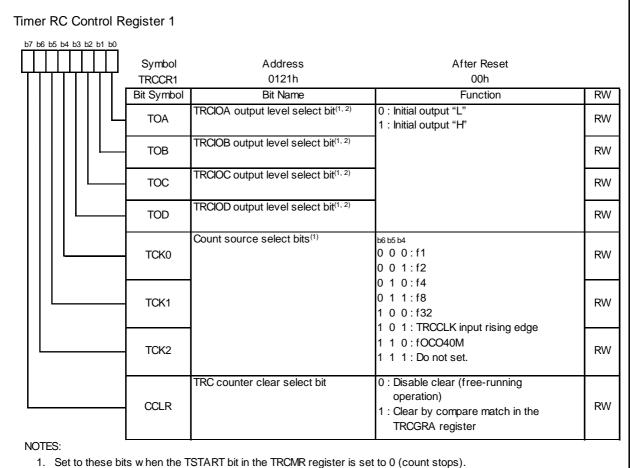

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

When read, the content is 1.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

Figure 14.47 TRCIOR0 Register in Output Compare Function

(b7)



NOTES:

1. When the BFC bit in the TRCMR register is set to 1 (buffer register of TRCGRA register), set the IOC2 bit in the TRCIOR1 register to the same value as the IOA2 bit in the TRCIOR0 register.

2. When the BFD bit in the TRCMR register is set to 1 (buffer register of TRCGRB register), set the IOD2 bit in the TRCIOR1 register to the same value as the IOB2 bit in the TRCIOR0 register.

Figure 14.48 TRCIOR1 Register in Output Compare Function

2. If the pin function is set for waveform output (refer to Tables 7.13 to 7.16, Tables 7.26 to 7.29, and Tables 7.36 to 7.39), the initial output level is output when the TRCCR1 register is set.

Figure 14.49 TRCCR1 Register in Output Compare Function

Table 14.19	Functions of TRCGRj Register when Using Output Compare Function
-------------	---

Register	Setting	Register Function	Output Compare Output Pin
TRCGRA	—	General register. Write a compare value to one of these	TRCIOA
TRCGRB		registers.	TRCIOB
TRCGRC	BFC = 0	General register. Write a compare value to one of these	TRCIOC
TRCGRD	BFD = 0	registers.	TRCIOD
TRCGRC	BFC = 1	Buffer register. Write the next compare value to one of	TRCIOA
TRCGRD	BFD = 1	these registers. (Refer to 14.3.3.2 Buffer Operation .)	TRCIOB

j = A, B, C, or D BFC, BFD: Bits in TRCMR register

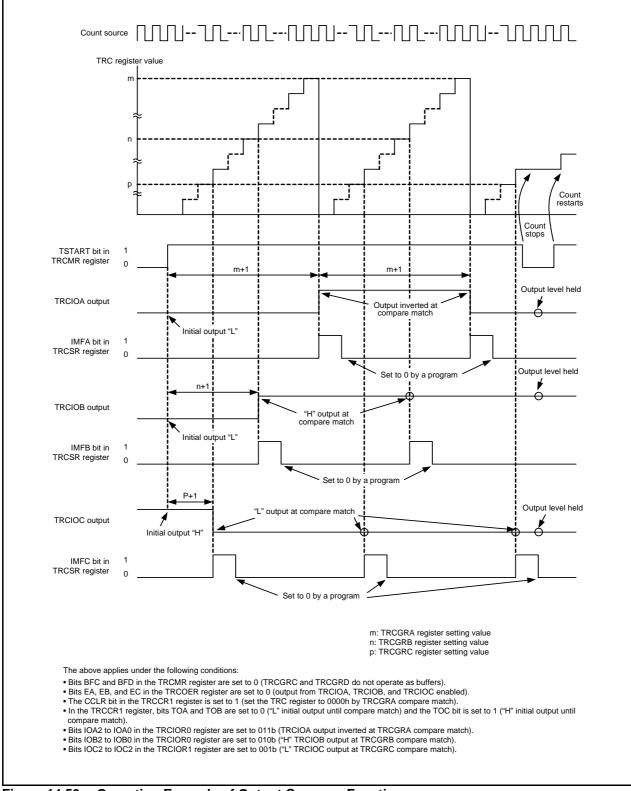


Figure 14.50 Operating Example of Output Compare Function

14.3.6 PWM Mode

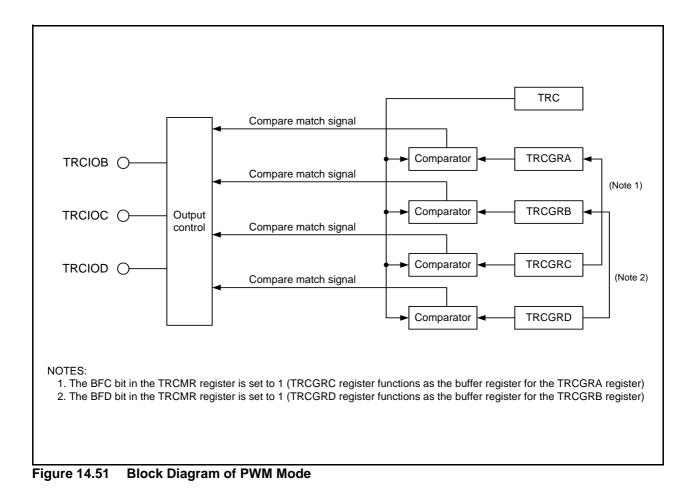

This mode outputs PWM waveforms. A maximum of three PWM waveforms with the same period are output. The PWM mode, or the timer mode, can be selected for each individual pin. (However, since the TRCGRA register is used when using any pin for the PWM mode, the TRCGRA register cannot be used for the timer mode.)

Table 14.20 lists the Specifications of PWM Mode, Figure 14.51 shows a Block Diagram of PWM Mode, Figure 14.52 shows the registers associated with the PWM mode, Table 14.21 lists the Functions of TRCGRj Register in PWM Mode, and Figures 14.53 and 14.54 show Operating Examples of PWM Mode.

Item	Specification
Count source	f1, f2, f4, f8, f32, fOCO40M, or external signal (rising edge) input to
	TRCCLK pin
Count operation	Increment
PWM waveform	PWM period: 1/fk × (m + 1)
	Active level width: 1/fk × (m - n)
	Inactive width: 1/fk × (n + 1)
	fk: Count source frequency
	m: TRCGRA register setting value
	n: TRCGRj register setting value
	m+1
	n+1 m-n ("L" is active level)
Count start condition	1 (count starts) is written to the TSTART bit in the TRCMR register.
Count stop condition	0 (count stops) is written to the TSTART bit in the TRCMR register.
	PWM output pin retains output level before count stops, TRC register
	retains value before count stops.
Interrupt request generation	 Compare match (contents of registers TRC and TRCGRj match)
timing	The TRC register overflows.
TRCIOA pin function	Programmable I/O port
TRCIOB, TRCIOC, and	Programmable I/O port or PWM output (selectable individually by pin)
TRCIOD pin functions	
INT0 pin function	Programmable I/O port, pulse output forced cutoff signal input, or INTO
	interrupt input
Read from timer	The count value can be read by reading the TRC register.
Write to timer	The TRC register can be written to.
Select functions	One to three pins selectable as PWM output pins per channel
	One or more of pins TRCIOB, TRCIOC, and TRCIOD
	Active level selectable by individual pin
	• Buffer operation (Refer to 14.3.3.2 Buffer Operation.)
	• Pulse output forced cutoff signal input (Refer to 14.3.3.4 Forced
	Cutoff of Pulse Output.)

Table 14.20 Specifications of PWM Mode

j = B, C, or D

b7 b6 b	b5 b4 b3 b2 b1 b0				
		Symbol	Address	After Reset	
TT		TRCCR1	0121h	00h	
		Bit Symbol	Bit Name	Function	RW
	╎╎╎╎└	ΤΟΑ	TRCIOA output level select bit ⁽¹⁾	Disabled in PWM mode	RW
		ТОВ	TRCIOB output level select bit ^(1, 2)	0 : Active level "H" (Initial output "L" "H" output by compare match in the TRCGRj register	RW
		тос	TRCIOC output level select bit ^(1, 2)	 "L" output by compare match in the TRCGRA register 1 : Active level "L" (Initial output "H" "L" output by compare match in 	RW
		TOD	TRCIOD output level select bit ^(1, 2)	the TRCGRj register "H" output by compare match in the TRCGRA register	RW
		ТСКО	Count source select bits ⁽¹⁾	b6 b5 b4 0 0 0:f1 0 0 1:f2	RW
		TCK1		0 1 0:f4 0 1 1:f8 1 0 0:f32 1 0 1:TRCCLK input rising edge	RW
		TCK2		1 1 0 : fOCO40M 1 1 1 : Do not set.	RW
		CCLR	TRC counter clear select bit	0 : Disable clear (free-running operation) 1 : Clear by compare match in the TRCGRA register	RW

- 1. Set to these bits when the TSTART bit in the TRCMR register is set to 0 (count stops).
- 2. If the pin function is set for waveform output (refer to Table 7.15, Table 7.16, Tables 7.26 to 7.29, and Tables 7.36 to 7.39), the initial output level is output when the TRCCR1 register is set.

Register	Setting	Register Function	PWM Output Pin
TRCGRA	-	General register. Set the PWM period.	-
TRCGRB	-	General register. Set the PWM output change point.	TRCIOB
TRCGRC	BFC = 0	General register. Set the PWM output change point.	TRCIOC
TRCGRD	BFD = 0		TRCIOD
TRCGRC	BFC = 1	Buffer register. Set the next PWM period. (Refer to 14.3.3.2 Buffer Operation.)	-
TRCGRD	BFD = 1	Buffer register. Set the next PWM output change point. (Refer to 14.3.3.2 Buffer Operation .)	TRCIOB

j = A, B, C, or D

BFC, BFD: Bits in TRCMR register

NOTE:

1. The output level does not change even when a compare match occurs if the TRCGRA register value (PWM period) is the same as the TRCGRB, TRCGRC, or TRCGRD register value.

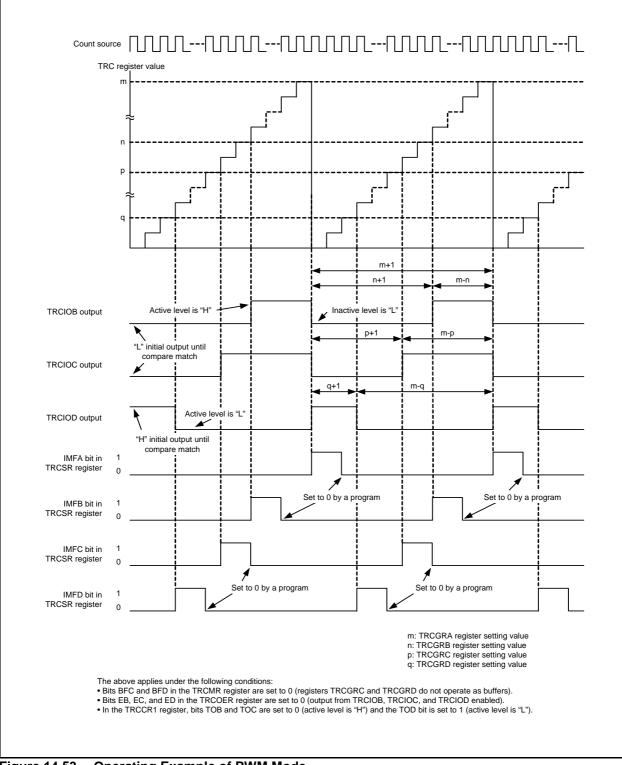


Figure 14.53 Operating Example of PWM Mode

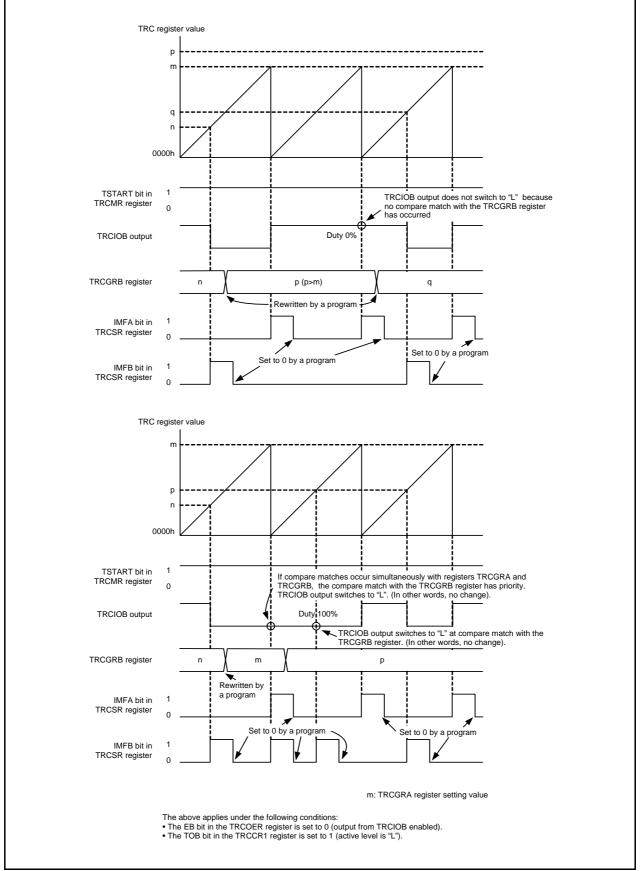


Figure 14.54 Operating Example of PWM Mode (Duty 0% and Duty 100%)

14.3.7 PWM2 Mode

This mode outputs a single PWM waveform. After a given wait duration has elapsed following the trigger, the pin output switches to active level. Then, after a given duration, the output switches back to inactive level. Furthermore, the counter stops at the same time the output returns to inactive level, making it possible to use PWM2 mode to output a programmable wait one-shot waveform.

Since timer RC uses multiple general registers in PWM2 mode, other modes cannot be used in conjunction with it.

Figure 14.55 shows a Block Diagram of PWM2 Mode, Table 14.22 lists the Specifications of PWM2 Mode, Figure 14.56 shows the register associated with PWM2 mode, Table 14.23 lists the Functions of TRCGRj Register in PWM2 Mode, and Figures 14.57 to 14.59 show Operating Examples of PWM2 Mode.

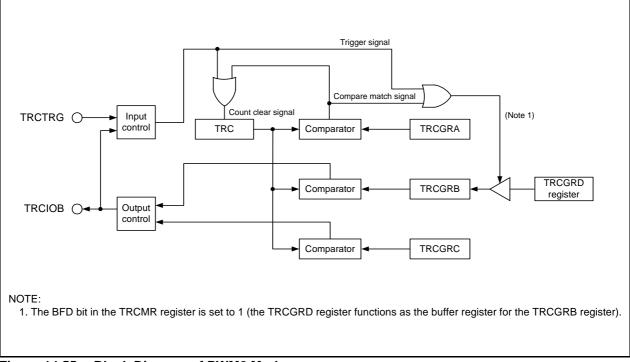


Figure 14.55 Block Diagram of PWM2 Mode

Item	Specification					
Count source	f1, f2, f4, f8, f32, fOCO40M, or external signal (rising edge) input to TRCCLK pin					
Count operation	Increment TRC register					
PWM waveform	PWM period: 1/fk × (m + 1) (no TRCTRG input) Active level width: 1/fk × (n - p) Wait time from count start or trigger: 1/fk × (p + 1) fk: Count source frequency m: TRCGRA register setting value n: TRCGRB register setting value p: TRCGRC register setting value					
	TRCIOB output					
Count start conditions	 Bits TCEG1 to TCEG0 in the TRCCR2 register are set to 00b (TRCTRG trigger disabled) or the CSEL bit in the TRCCR2 register is set to 0 (count continues). 1 (count starts) is written to the TSTART bit in the TRCMR register. Bits TCEG1 to TCEG0 in the TRCCR2 register are set to 01b, 10b, or 11b (TRCTRG trigger enabled) and the TSTART bit in the TRCMR register is set to 1 (count starts). A trigger is input to the TRCTRG pin 					
Count stop conditions	 O (count stops) is written to the TSTART bit in the TRCMR register while the CSEL bit in the TRCCR2 register is set to 0 or 1. The TRCIOB pin outputs the initial level in accordance with the value of the TOB bit in the TRCCR1 register. The TRC register retains the value before count stops. The count stops due to a compare match with TRCGRA while the CSEL bit in the TRCCR2 register is set to 1 The TRCIOB pin outputs the initial level. The TRC register retains the value before count stops to 1 					
Interrupt request	Compare match (contents of TRC and TRCGRj registers match)					
generation timing	• The TRC register overflows					
TRCIOA/TRCTRG pin function	Programmable I/O port or TRCTRG input					
TRCIOB pin function	PWM output					
TRCIOC and TRCIOD pin functions	Programmable I/O port					
INT0 pin function	Programmable I/O port, pulse output forced cutoff signal input, or INTO interrupt input					
Read from timer	The count value can be read by reading the TRC register.					
Write to timer	The TRC register can be written to.					
Select functions	 External trigger and valid edge selected The edge or edges of the signal input to the TRCTRG pin can be used as the PWM output trigger: rising edge, falling edge, or both rising and falling edges Buffer operation (Refer to 14.3.3.2 Buffer Operation.) Pulse output forced cutoff signal input (Refer to 14.3.3.4 Forced Cutoff of Pulse Output.) 					
	Digital filter (Refer to 14.3.3.3 Digital Filter.)					

Table 14.22 Specifications of PWM2 Mode

j = A, B, C, or D

Timer RC	Cont	trol R	egister 1			
b7 b6 b5 b4	b3 b2	b1 b0				
	ЦЦ	Щ	Symbol	Address	After Reset	
			TRCCR1	0121h	00h	
			Bit Symbol	Bit Name	Function	RW
			TOA	TRCIOA output level select bit ⁽¹⁾	Disabled in the PWM2 mode	RW
			ТОВ	TRCIOB output level select bit ^(1, 2)	 0 : Active level "H" (Initial output "L" "H" output by compare match in the TRCGRC register "L" output by compare match in the TRCGRB register) 1 : Active level "L" (Initial output "H" "L" output by compare match in the TRCGRC register "H" output by compare match in the TRCGRB register) 	RW
			TOC	TRCIOC output level select bit ⁽¹⁾	Disabled in the PWM2 mode	RW
			TOD	TRCIOD output level select bit ⁽¹⁾		RW
			TCK0	Count source select bits ⁽¹⁾	b6 b5 b4 0 0 0 : f1 0 0 1 : f2	RW
			TCK1		0 1 0:f4 0 1 1:f8 1 0 0:f32	RW
			TCK2		1 0 1 : TRCCLK input rising edge 1 1 0 : fOCO40M 1 1 1 : Do not set.	RW
			CCLR	TRC counter clear select bit	0 : Disable clear (free-running operation) 1 : Clear by compare match in the TRCGRA register	RW
NOTES:		•				

1. Set to these bits when the TSTART bit in the TRCMR register is set to 0 (count stops).

2. If the pin function is set for waveform output (refer to Table 7.15 and Table 7.16), the initial output level is output when the TRCCR1 register is set.

Figure 14.56 TRCCR1 Register in PWM2 Mode

Table 14.23 Functions of TRCGRj Register in PWM2 Mode

Register	Setting	Register Function	PWM2 Output Pin
TRCGRA	-	General register. Set the PWM period.	TRCIOB pin
TRCGRB	-	General register. Set the PWM output change point.	
TRCGRC	BFC = 0	General register. Set the PWM output change point (wait time after trigger).	
TRCGRD	BFD = 0	(Not used in PWM2 mode)	-
TRCGRD	BFD = 1	Buffer register. Set the next PWM output change point. (Refer to 14.3.3.2 Buffer Operation .)	TRCIOB pin

j = A, B, C, or D

BFC, BFD: Bits in TRCMR register

NOTE:

1. Do not set the TRCGRB and TRCGRC registers to the same value.

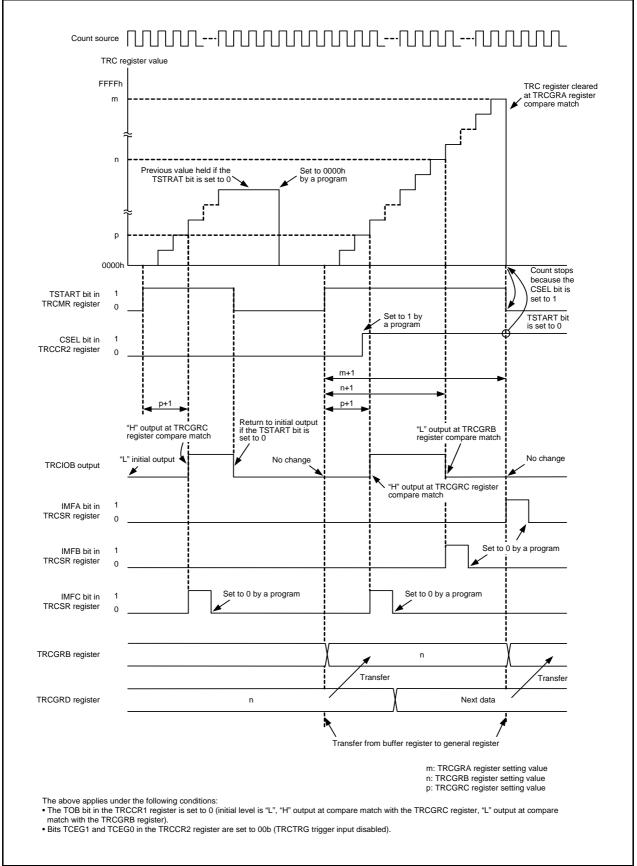


Figure 14.57 Operating Example of PWM2 Mode (TRCTRG Trigger Input Disabled)

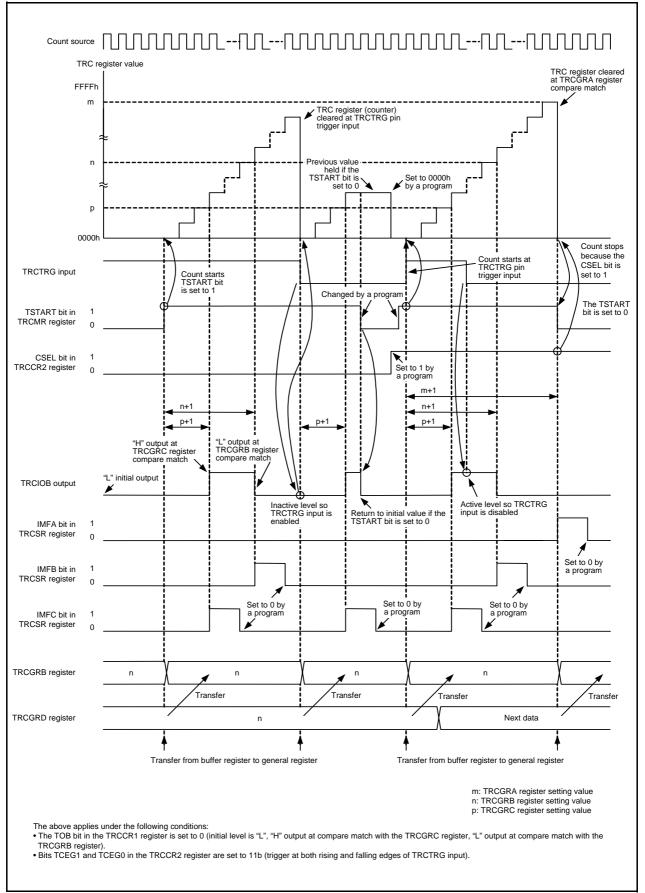


Figure 14.58 Operating Example of PWM2 Mode (TRCTRG Trigger Input Enabled)

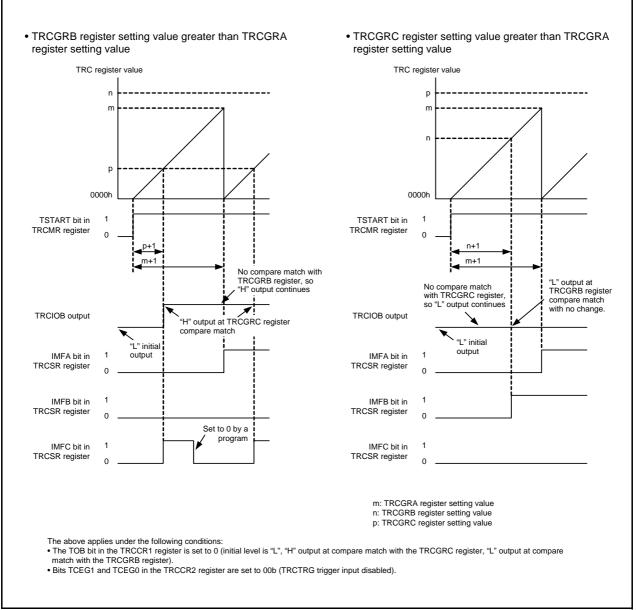


Figure 14.59 Operating Example of PWM2 Mode (Duty 0% and Duty 100%)

14.3.8 Timer RC Interrupt

Timer RC generates a timer RC interrupt request from five sources. The timer RC interrupt uses the single TRCIC register (bits IR and ILVL0 to ILVL2) and a single vector.

Table 14.24 lists the Registers Associated with Timer RC Interrupt, and Figure 14.60 is a Timer RC Interrupt Block Diagram.

Table 14.24	Registers Associated with Timer RC Interrupt
-------------	--

Timer RC Status Register	Timer RC Interrupt Enable Register	Timer RC Interrupt Control Register
TRCSR	TRCIER	TRCIC

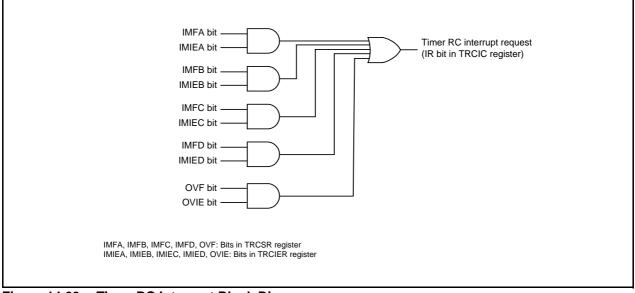


Figure 14.60 Timer RC Interrupt Block Diagram

Like other maskable interrupts, the timer RC interrupt is controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL. However, it differs from other maskable interrupts in the following respects because a single interrupt source (timer RC interrupt) is generated from multiple interrupt request sources.

- The IR bit in the TRCIC register is set to 1 (interrupt requested) when a bit in the TRCSR register is set to 1 and the corresponding bit in the TRCIER register is also set to 1 (interrupt enabled).
- The IR bit is set to 0 (no interrupt request) when the bit in the TRCSR register or the corresponding bit in the TRCIER register is set to 0, or both are set to 0. In other words, the interrupt request is not maintained if the IR bit is once set to 1 but the interrupt is not acknowledged.
- If after the IR bit is set to 1 another interrupt source is triggered, the IR bit remains set to 1 and does not change.
- If multiple bits in the TRCIER register are set to 1, use the TRCSR register to determine the source of the interrupt request.
- The bits in the TRCSR register are not automatically set to 0 when an interrupt is acknowledged. Set them to 0 within the interrupt routine. Refer to Figure 14.30 TRCSR Register, for the procedure for setting these bits to 0.

Refer to Figure 14.29 TRCIER Register, for details of the TRCIER register.

Refer to **12.1.6 Interrupt Control**, for details of the TRCIC register and **12.1.5.2 Relocatable Vector Tables**, for information on interrupt vectors.

14.3.9 Notes on Timer RC

14.3.9.1 TRC Register

• The following note applies when the CCLR bit in the TRCCR1 register is set to 1 (clear TRC register at compare match with TRCGRA register).

When using a program to write a value to the TRC register while the TSTART bit in the TRCMR register is set to 1 (count starts), ensure that the write does not overlap with the timing with which the TRC register is set to 0000h.

If the timing of the write to the TRC register and the setting of the TRC register to 0000h coincide, the write value will not be written to the TRC register and the TRC register will be set to 0000h.

 Reading from the TRC register immediately after writing to it can result in the value previous to the write being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions. Program Example MOV.W #XXXXh, TRC ;Write

iple	MOV.W	#XXXXh, TRC	;Write
	JMP.B	L1	;JMP.B instruction
L1:	MOV.W	TRC,DATA	;Read

14.3.9.2 TRCSR Register

Reading from the TRCSR register immediately after writing to it can result in the value previous to the write being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions.

Program Example	MOV.B	#XXh, TRCSR	;Write
	JMP.B	L1	;JMP.B instruction
L1:	MOV.B	TRCSR,DATA	;Read

14.3.9.3 Count Source Switching

• Stop the count before switching the count source.

Switching procedure

- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.

• After switching the count source from fOCO40M to another clock, allow a minimum of two cycles of f1 to elapse after changing the clock setting before stopping fOCO40M.

Switching procedure

- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- (3) Wait for a minimum of two cycles of f1.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).

14.3.9.4 Input Capture Function

- The pulse width of the input capture signal should be three cycles or more of the timer RC operation clock (refer to **Table 14.11 Timer RC Operation Clock**).
- The value of the TRC register is transferred to the TRCGRj register one or two cycles of the timer RC operation clock after the input capture signal is input to the TRCIOj (j = A, B, C, or D) pin (when the digital filter function is not used).

14.3.9.5 TRCMR Register in PWM2 Mode

When the CSEL bit in the TRCCR2 register is set to 1 (count stops at compare match with the TRCGRA register), do not set the TRCMR register at compare match timing of registers TRC and TRCGRA.

14.4 Timer RE

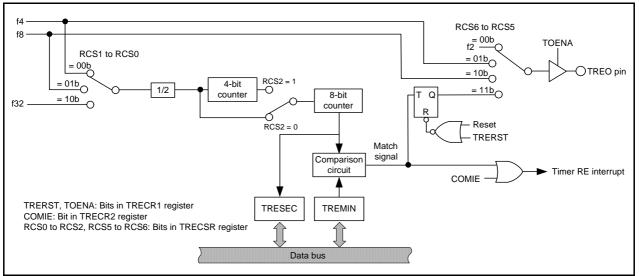
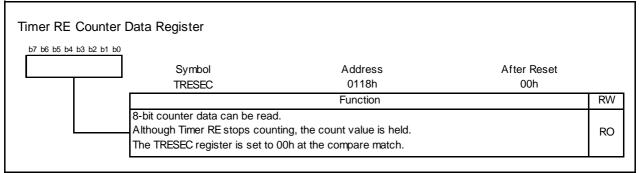
Timer RE has the 4-bit counter and 8-bit counter.

- Timer RE has the following modes:
 - Output compare mode Count a count source and detect compare matches.

The count source for timer RE is the operating clock that regulates the timing of timer operations.

14.4.1 Output Compare Mode

In output compare mode, the internal count source divided by 2 is counted using the 4-bit or 8-bit counter and compare value match is detected with the 8-bit counter. Figure 14.61 shows a Block Diagram of Output Compare Mode and Table 14.25 lists the Output Compare Mode Specifications. Figures 14.62 to 14.66 show the Registers Associated with Output Compare Mode, and Figure 14.67 shows the Operating Example in Output Compare Mode.

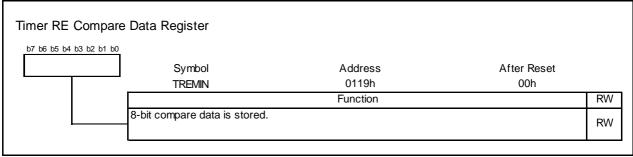
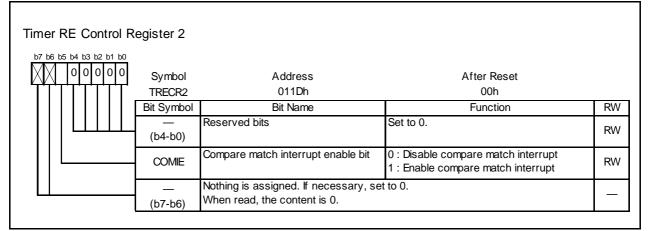

Figure 14.61 Block Diagram of Output Compare Mode

Table 14.25	Output Compare Mode Specifications
-------------	---

Item	Specification
Count sources	f4, f8, f32
Count operations	Increment
	When the 8-bit counter content matches with the TREMIN register content, the
	value returns to 00h and count continues.
	The count value is held while count stops.
Count period	 When RCS2 = 0 (4-bit counter is not used)
	1/fi x 2 x (n+1)
	 When RCS2 = 1 (4-bit counter is used)
	1/fi x 32 x (n+1)
	fi: Frequency of count source
	n: Setting value of TREMIN register
Count start condition	1 (count starts) is written to the TSTART bit in the TRECR1 register
Count stop condition	0 (count stops) is written to the TSTART bit in the TRECR1 register
Interrupt request generation timing When the 8-bit counter content matches with the TREMIN register content matches wit	
TREO pin function	Select any one of the following:
	Programmable I/O ports
	Output f2, f4, or f8
	Compare output
Read from timer	When reading the TRESEC register, the 8-bit counter value can be read.
	When reading the TREMIN register, the compare value can be read.
Write to timer	Writing to the TRESEC register is disabled.
	When bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer
	stops), writing to the TREMIN register is enabled.
Select functions	Select use of 4-bit counter
	Compare output function
	Every time the 8-bit counter value matches the TREMIN register value, TREO
	output polarity is reversed. The TREO pin outputs "L" after reset is deasserted
	and the timer RE is reset by the TRERST bit in the TRECR1 register. Output
	level is held by setting the TSTART bit to 0 (count stops).



b7 b6 b5	b4 b3 b2 b1 b0	Symbol TRECR1	Address 011Ch	After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
	L	(b0)	Nothing is assigned. If neces When read, the content is 0.		_
		TCSTF	Timer RE count status flag	0 : Count stopped 1 : Counting	RO
		TOENA	TREO pin output enable bit	0 : Disable clock output 1 : Enable clock output	RW
		INT	Interrupt request timing bit	Set to 0 in output compare mode.	RW
		TRERST	Timer RE reset bit	 When setting this bit to 0, after setting it to 1, the follow ing will occur. Registers TRESEC, TREMIN, and TRECR2 are set to 00h. Bits TCSTF, INT, and TSTART in the TRECR1 register are set to 0. The 8-bit counter is set to 00h and the 4-bit counter is set to 0h. 	RW
		 (b6-b5)	Reserved bits	Set to 0.	RW
		TSTART	Timer RE count start bit	0 : Count stops 1 : Count starts	RW

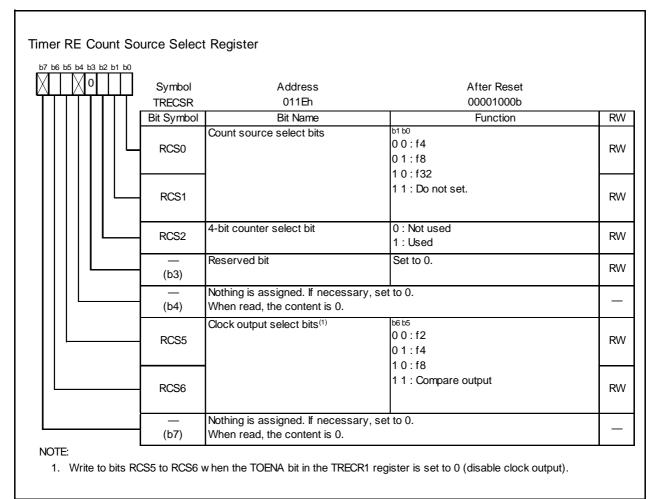


Figure 14.66 TRECSR Register in Output Compare Mode

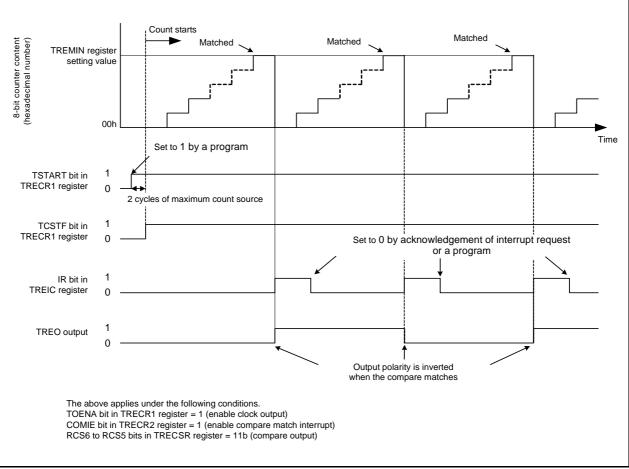


Figure 14.67 Operating Example in Output Compare Mode

14.4.2 Notes on Timer RE

14.4.2.1 Starting and Stopping Count

Timer RE has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates count start or stop. Bits TSTART and TCSTF are in the TRECR1 register.

Timer RE starts counting and the TCSTF bit is set to 1 (count starts) when the TSTART bit is set to 1 (count starts). It takes up to 2 cycles of the count source until the TCSTF bit is set to 1 after setting the TSTART bit to 1. During this time, do not access registers associated with timer $RE^{(1)}$ other than the TCSTF bit.

Also, timer RE stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit is set to 0 (count stops). It takes the time for up to 2 cycles of the count source until the TCSTF bit is set to 0 after setting the TSTART bit to 0. During this time, do not access registers associated with timer RE other than the TCSTF bit.

NOTE:

1. Registers associated with timer RE: TRESEC, TREMIN, TRECR1, TRECR2, and TRECSR.

14.4.2.2 Register Setting

Write to the following registers or bits when timer RE is stopped.

- Registers TRESEC, TREMIN, and TRECR2
- INT bit in TRECR1 register
- Bits RCS0 to RCS2 and b3 in TRECSR register

Timer RE is stopped when bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer RE stopped).

Also, set all above-mentioned registers and bits (immediately before timer RE count starts) before setting the TRECR2 register.

15. Serial Interface

The serial interface consists of one channel (UART0). UART0 has an exclusive timer to generate the transfer clock and operates.

Figure 15.1 shows a UARTO Block Diagram. Figure 15.2 shows a UARTO Transmit/Receive Unit.

UARTi has two modes: clock synchronous serial I/O mode and clock asynchronous serial I/O mode (UART mode). Figures 15.3 to 15.7 show the Registers Associated with UART0.

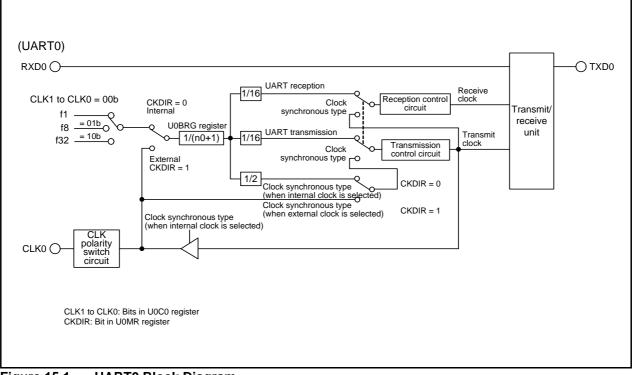
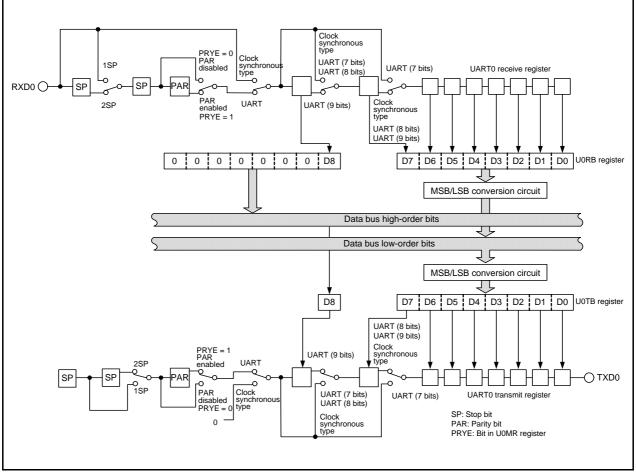
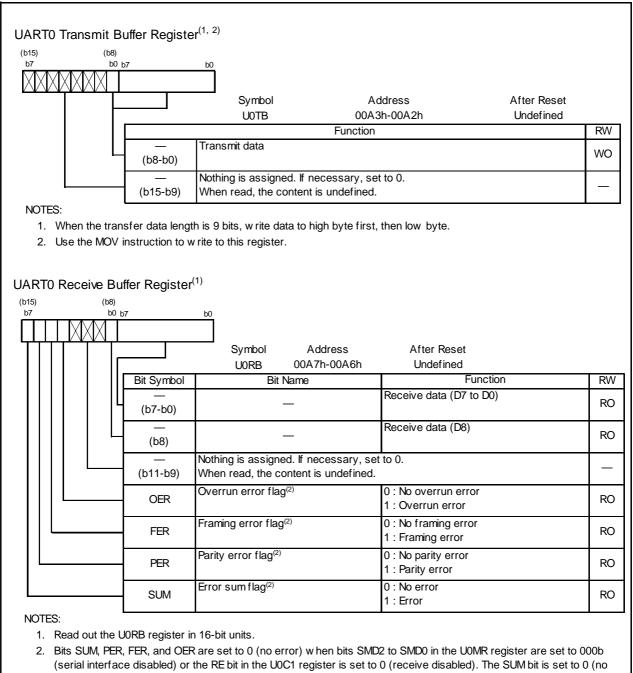
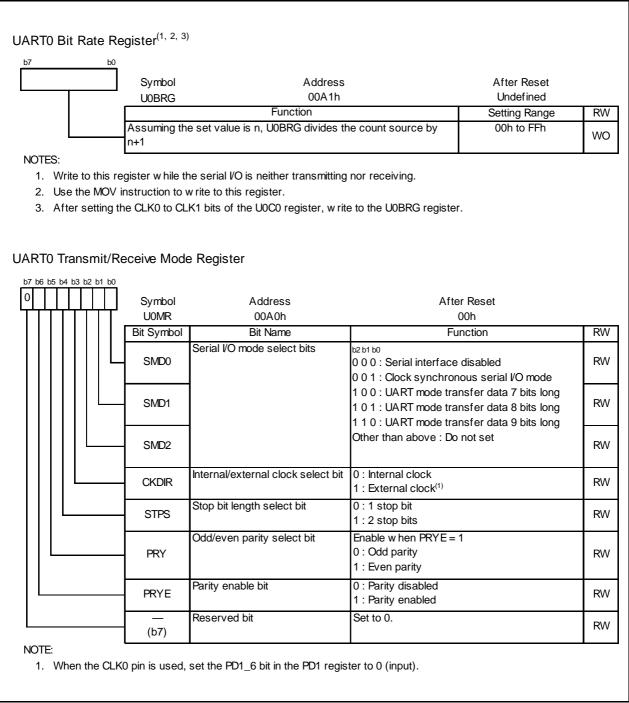
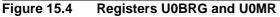


Figure 15.1 UART0 Block Diagram



Figure 15.2 UART0 Transmit/Receive Unit



error) when bits PER, FER, and OER are set to 0 (no error). Bits PER and FER are set to 0 even when the higher byte of the U0RB register is read out.

Also, bits PER and FER are set to 0 w hen reading the high-order byte of the U0RB register.

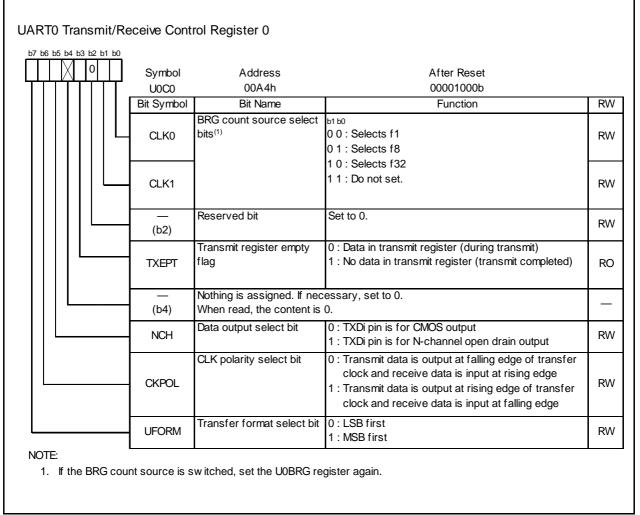
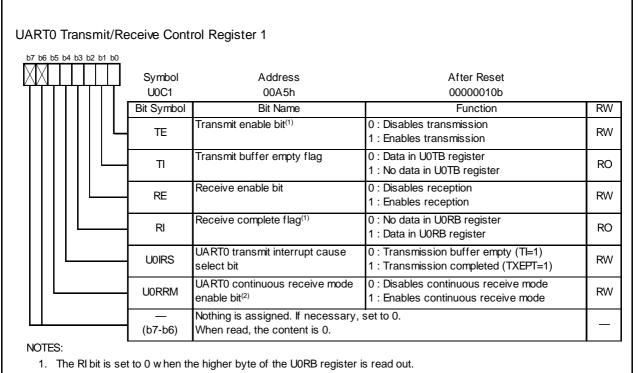
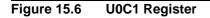
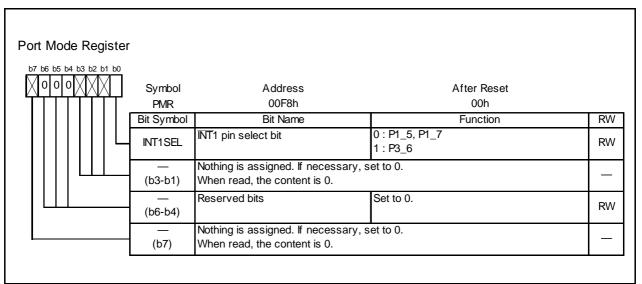





Figure 15.5 U0C0 Register

2. Set the U0RRM bit to 0 (disables continuous receive mode) in UART mode.

15.1 Clock Synchronous Serial I/O Mode

In the clock synchronous serial I/O mode, data is transmitted and received using a transfer clock. Table 15.1 lists the Specifications of Clock Synchronous Serial I/O Mode. Table 15.2 lists the Registers Used and Settings in Clock Synchronous Serial I/O Mode.

Table 15.1	Specifications of Clock Synchronous Serial I/O Mode
------------	---

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clocks	 CKDIR bit in U0MR register is set to 0 (internal clock): fi/(2(n+1)) fi = f1, f8, f32 n = value set in U0BRG register: 00h to FFh The CKDIR bit is set to 1 (external clock): input from CLK0 pin
Transmit start conditions	 Before transmit starts, the following requirements must be met⁽¹⁾ The TE bit in the U0C1 register is set to 1 (transmission enabled) The TI bit in the U0C1 register is set to 0 (data in the U0TB register)
Receive start conditions	 Before receive starts, the following requirements must be met⁽¹⁾ The RE bit in the U0C1 register is set to 1 (reception enabled) The TE bit in the U0C1 register is set to 1 (transmission enabled) The TI bit in the U0C1 register is set to 0 (data in the U0TB register)
Interrupt request generation timing	 When transmitting, one of the following conditions can be selected The U0IRS bit is set to 0 (transmit buffer empty): When transferring data from the U0TB register to UART0 transmit register (when transmission starts). The U0IRS bit is set to 1 (transmission completes): When completing data transmission from UART0 transmit register. When receiving When data transfer from the UART0 receive register to the U0RB register (when reception completes).
Error detection	 Overrun error⁽²⁾ This error occurs if the serial interface starts receiving the next data item before reading the U0RB register and receives the 7th bit of the next data.
Select functions	 CLK polarity selection Transfer data input/output can be selected to occur synchronously with the rising or the falling edge of the transfer clock. LSB first, MSB first selection Whether transmitting or receiving data begins with bit 0 or begins with bit 7 can be selected. Continuous receive mode selection Receive is enabled immediately by reading the U0RB register.

NOTES:

1. If an external clock is selected, ensure that the external clock is "H" when the CKPOL bit in the U0C0 register is set to 0 (transmit data output at falling edge and receive data input at rising edge of transfer clock), and that the external clock is "L" when the CKPOL bit is set to 1 (transmit data output at rising edge and receive data input at falling edge of transfer clock).

2. If an overrun error occurs, the receive data (b0 to b8) of the U0RB register will be undefined. The IR bit in the S0RIC register remains unchanged.

Register	Bit	Function
U0TB	0 to 7	Set data transmission
U0RB	0 to 7	Data reception can be read
	OER	Overrun error flag
U0BRG	0 to 7	Set bit rate
U0MR	SMD2 to SMD0	Set to 001b
	CKDIR	Select the internal clock or external clock
U0C0	CLK1 to CLK0	Select the count source in the U0BRG register
	TXEPT	Transmit register empty flag
	NCH	Select TXD0 pin output mode
	CKPOL	Select the transfer clock polarity
	UFORM	Select the LSB first or MSB first
U0C1	TE	Set this bit to 1 to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set this bit to 1 to enable reception
	RI	Reception complete flag
	U0IRS	Select the UART0 transmit interrupt source
	UORRM	Set this bit to 1 to use continuous receive mode

Table 15.2	Registers Used and Settings in Clock Synchronous Serial I/O Mode ⁽¹⁾
------------	---

NOTE:

1. Set bits which are not in this table to 0 when writing to the above registers in clock synchronous serial I/O mode.

Table 15.3 lists the I/O Pin Functions in Clock Synchronous Serial I/O Mode. The TXD0 pin outputs "H" level between the operating mode selection of UART0 and transfer start. (If the NCH bit is set to 1 (N-channel opendrain output), this pin is in a high-impedance state.)

Pin Name	Function	Selection Method
TXD0 (P1_4)	Output serial data	(Outputs dummy data when performing reception only)
RXD0 (P1_5)	Input serial data	PD1_5 bit in PD1 register = 0
		(P1_5 can be used as an input port when performing
		transmission only)
CLK0 (P1_6)	Output transfer clock	CKDIR bit in U0MR register = 0
	Input transfer clock	CKDIR bit in U0MR register = 1
		PD1_6 bit in PD1 register = 0

1

Example of transmit timing (when internal clock is selected)
TE bit in U0C1 1 register 0 Set data in U0TB register
TI bit in UOC1 1 register 0 Transfer from UOTB register to UART0 transmit register
CLK0
TXD0 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7
TXEPT bit in 1 U0C0 register 0
IR bit in SOTIC 1 register 0
Set to 0 when interrupt request is acknowledged, or set by a program $TC = TCLK = 2(n+1)/fi$ fi: Frequency of U0BRG count source (f1, f8, f32) n: Setting value to U0BRG register = 0 (internal clock) • CKPIC bit in U0CC1 register = 0 (output transmit data at the falling edge and input receive data at the rising edge of the transfer clock) • U0IRS bit in U0C1 register = 0 (an interrupt request is generated when the transmit buffer is empty)
Example of receive timing (when external clock is selected) RE bit in UOC1 1 register 0
TE bit in UOC1 1
TI bit in UOC1 1 register 0 Transfer from UOTB register to UART0 transmit register
RXD0 $(D_0) D_1 (D_2) D_3 (D_4) (D_5) D_6 (D_7) (D_0) D_1 (D_2) D_3 (D_4) (D_5)$ Transfer from UART0 receive register to
RI bit in UOC1 1 register 0
IR bit in SORIC 1 register 0
Set to 0 when interrupt request is acknowledged, or set by a program The above applies under the following settings: • CKDIR bit in U0MR register = 1 (external clock) • CKPOL bit in U0C0 register = 0 (output transmit data at the falling edge and input receive data at the rising edge of the transfer clock)
The following conditions are met when "H" is applied to the CLK0 pin before receiving data: • TE bit in U0C1 register = 1 (enables transmit) • RE bit in U0C1 register = 1 (enables receive) • Write dummy data to the U0TB register fEXT: Frequency of external clock
igure 15.8 Transmit and Receive Timing Example in Clock Synchronous Serial I/O Mode

15.1.1 Polarity Select Function

Figure 15.9 shows the Transfer Clock Polarity. Use the CKPOL bit in the U0C0 register to select the transfer clock polarity.

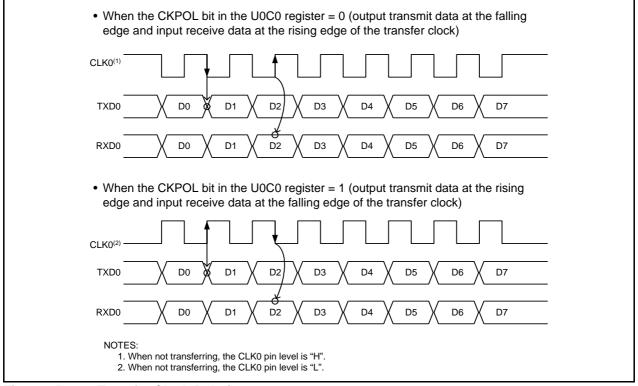
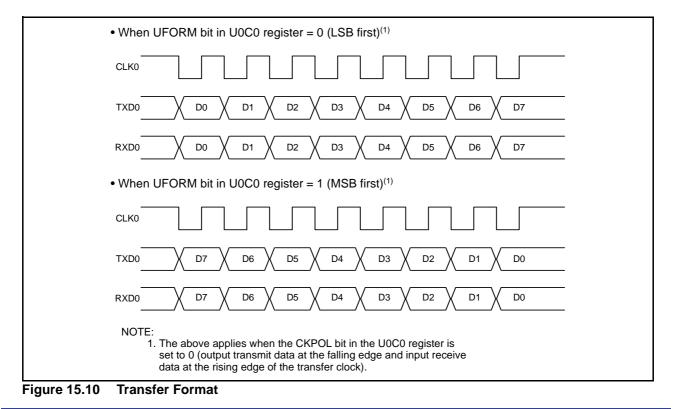



Figure 15.9 Transfer Clock Polarity

15.1.2 LSB First/MSB First Select Function

Figure 15.10 shows the Transfer Format. Use the UFORM bit in the U0C0 register to select the transfer format.

15.1.3 Continuous Receive Mode

Continuous receive mode is selected by setting the U0RRM bit in the U0C1 register to 1 (enables continuous receive mode). In this mode, reading the U0RB register sets the TI bit in the U0C1 register to 0 (data in the U0TB register). When the U0RRM bit is set to 1, do not write dummy data to the U0TB register by a program.

15.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows data transmission and reception after setting the desired bit rate and transfer data format. Table 15.4 lists the Specifications of UART Mode. Table 15.5 lists the Registers Used and Settings for UART Mode.

Item	Specification
Transfer data formats	 Character bit (transfer data): Selectable among 7, 8 or 9 bits Start bit: 1 bit Parity bit: Selectable among odd, even, or none Stop bit: Selectable among 1 or 2 bits
Transfer clocks	 CKDIR bit in U0MR register is set to 0 (internal clock): fj/(16(n+1)) fj = f1, f8, f32 n = value set in U0BRG register: 00h to FFh CKDIR bit is set to 1 (external clock): fEXT/(16(n+1)) fEXT: Input from CLK0 pin, n = value set in U0BRG register: 00h to FFh
Transmit start conditions	 Before transmission starts, the following are required TE bit in U0C1 register is set to 1 (transmission enabled) TI bit in U0C1 register is set to 0 (data in U0TB register)
Receive start conditions	Before reception starts, the following are required RE bit in U0C1 register is set to 1 (reception enabled) Start bit detected
Interrupt request generation timing	 When transmitting, one of the following conditions can be selected U0IRS bit is set to 0 (transmit buffer empty): When transferring data from the U0TB register to UART0 transmit register (when transmit starts). U0IRS bit is set to 1 (transfer ends): When serial interfac.e completes transmitting data from the UART0 transmit register When receiving When transferring data from the UART0 receive register to U0RB register (when receive ends).
Error detection	 Overrun error⁽¹⁾ This error occurs if the serial interface starts receiving the next data item before reading the UORB register and receive the bit preceding the final stop bit of the next data item. Framing error This error occurs when the set number of stop bits is not detected. Parity error This error occurs when parity is enabled, and the number of 1's in parity and character bits do not match the number of 1's set. Error sum flag This flag is set is set to 1 when an overrun, framing, or parity error is generated.

Table 15.4 Specifications of UART Mode

NOTE:

1. If an overrun error occurs, the receive data (b0 to b8) of the U0RB register will be undefined. The IR bit in the S0RIC register remains unchanged.

Register	Bit	Function
U0TB	0 to 8	Set transmit data ⁽¹⁾
U0RB	0 to 8	Receive data can be read ^(1, 2)
	OER,FER,PER,SUM	Error flag
U0BRG	0 to 7	Set a bit rate
U0MR	SMD2 to SMD0	Set to 100b when transfer data is 7 bits long. Set to 101b when transfer data is 8 bits long. Set to 110b when transfer data is 9 bits long.
	CKDIR	Select the internal clock or external clock
	STPS	Select the stop bit
	PRY, PRYE	Select whether parity is included and whether odd or even
U0C0	CLK0, CLK1	Select the count source for the U0BRG register
	TXEPT	Transmit register empty flag
	NCH	Select TXD0 pin output mode
	CKPOL	Set to 0
	UFORM	LSB first or MSB first can be selected when transfer data is 8 bits long. Set to 0 when transfer data is 7 or 9 bits long.
U0C1	TE	Set to 1 to enable transmit
	TI	Transmit buffer empty flag
	RE	Set to 1 to enable receive
	RI	Receive complete flag
	U0IRS	Select the factor of UART0 transmit interrupt
	UORRM	Set to 0

Table 15.5	Registers Used and Settings for UART Mode
------------	---

NOTES:

1. The bits used for transmit/receive data are as follows: Bits 0 to 6 when transfer data is 7 bits long; bits 0 to 7 when transfer data is 8 bits long; bits 0 to 8 when transfer data is 9 bits long.

2. The following bits are undefined: Bits 7 and 8 when transfer data is 7 bits long; bit 8 when transfer data is 8 bits long.

Table 15.6 lists the I/O Pin Functions in UART Mode. After the UART0 operating mode is selected, the TXD0 pin outputs "H" level (If the NCH bit is set to 1 (N-channel open-drain output), this pin is in a high-impedance state) until transfer starts.

Table 15.6 I/O Pin Functions in UART Mo

Pin name	Function	Selection Method
TXD0 (P1_4)	Output serial data	(Cannot be used as a port when performing reception only)
RXD0 (P1_5)	Input serial data	PD1_5 bit in PD1 register = 0
		(P1_5 can be used as an input port when performing
		transmission only)
CLK0 (P1_6)	Programmable I/O Port	CKDIR bit in U0MR register = 0
	Input transfer clock	CKDIR bit in U0MR register = 1
		PD1_6 bit in PD1 register = 0

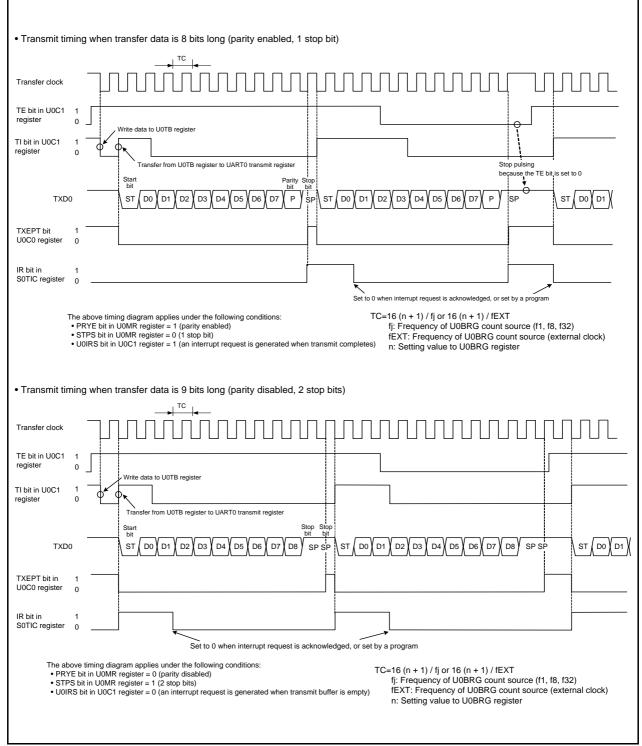


Figure 15.11 Transmit Timing in UART Mode

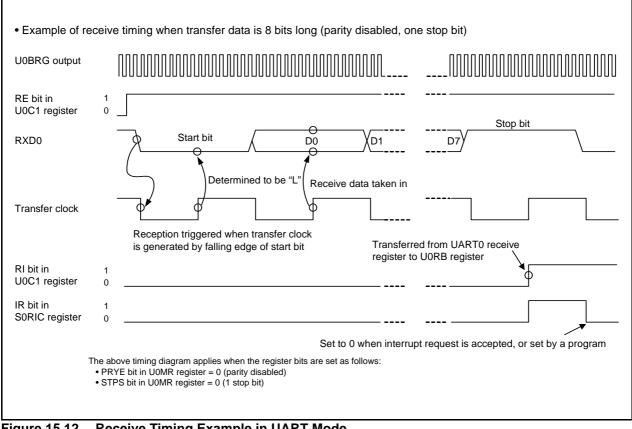


Figure 15.12 Receive Timing Example in UART Mode

15.2.1 Bit Rate

In UART mode, the bit rate is the frequency divided by the U0BRG register.

Figure 15.13 shows a Calculation Formula of U0BRG Register Setting Value. Table 15.7 lists the Bit Rate Setting Example in UART Mode (Internal Clock Selected).

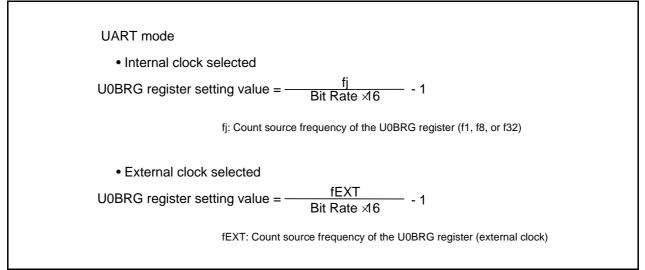


Figure 15.13 Calculation Formula of U0BRG Register Setting Value

Bit Rate	BRG	System Clock = 20 MHz			System Clock = 8 MHz		
(bps)	Count	U0BRG	Actual Time	Error (%)	U0BRG	Actual	Error (%)
(bp3)	Source	Setting Value	(bps)		Setting Value	Time (bps)	
1200	f8	129 (81h)	1201.92	0.16	51 (33h)	1201.92	0.16
2400	f8	64 (40h)	2403.85	0.16	25 (19h)	2403.85	0.16
4800	f8	32 (20h)	4734.85	-1.36	12 (0Ch)	4807.69	0.16
9600	f1	129 (81h)	9615.38	0.16	51 (33h)	9615.38	0.16
14400	f1	86 (56h)	14367.82	-0.22	34 (22h)	14285.71	-0.79
19200	f1	64 (40h)	19230.77	0.16	25 (19h)	19230.77	0.16
28800	f1	42 (2Ah)	29069.77	0.94	16 (10h)	29411.76	2.12
31250	f1	39 (27h)	31250.00	0.00	15 (0Fh)	31250.00	0.00
38400	f1	32 (20h)	37878.79	-1.36	12 (0Ch)	38461.54	0.16
51200	f1	23 (17h)	52083.33	1.73	9 (09h)	50000.00	-2.34

 Table 15.7
 Bit Rate Setting Example in UART Mode (Internal Clock Selected)

15.3 Notes on Serial Interface

• When reading data from the U0RB register either in the clock synchronous serial I/O mode or in the clock asynchronous serial I/O mode, ensure the data is read in 16-bit units. When the high-order byte of the U0RB register is read, bits PER and FER in the U0RB register and the RI bit in the U0C1 register are set to 0. The check receive errors, read the U0RB register and then use the read data.

Example (when reading receive buffer register): MOV.W 00A6H,R0 ; Read the U0RB register

• When writing data to the U0TB register in the clock asynchronous serial I/O mode with 9-bit transfer data length, write data to the high-order byte first then the low-order byte, in 8-bit units.

Example (when reading transmit buffer register):

T (0	e
MOV.B	#XXH,00A3H	; Write the high-order byte of U0TB register
MOV.B	#XXH,00A2H	; Write the low-order byte of U0TB register

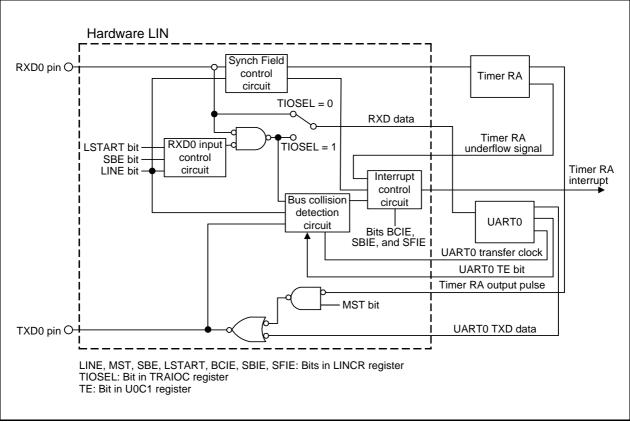
16. Hardware LIN

The hardware LIN performs LIN communication in cooperation with timer RA and UARTO.

16.1 Features

The hardware LIN has the features listed below. Figure 16.1 shows a Block Diagram of Hardware LIN.

Master mode


- Generates Synch Break
- Detects bus collision

Slave mode

- Detects Synch Break
- Measures Synch Field
- Controls Synch Break and Synch Field signal inputs to UARTO
- Detects bus collision

NOTE:

1. The WakeUp function is detected by INT1.

16.2 Input/Output Pins

The pin configuration of the hardware LIN is listed in Table 16.1.

Table 16.1 Pin Configuration

Name	Abbreviation	Input/Output	Function
Receive data input	RXD0	Input	Receive data input pin of the hardware LIN
Transmit data output	TXD0	Output	Transmit data output pin of the hardware LIN

16.3 **Register Configuration**

The hardware LIN contains the registers listed below. These registers are detailed in Figures 16.2 and 16.3.

- LIN Control Register (LINCR)
- LIN Status Register (LINST)

b7 b6	b5 b4	b3 b2	b1 b0				
				Symbol	Address	After Reset	
	ТT	TT		LINCR	0106h	00h	
				Bit Symbol	Bit Name	Function	RW
			SFIE	Synch Field measurement- completed interrupt enable bit	 0 : Disables Synch Field measurement- completed interrupt 1 : Enables Synch Field measurement- completed interrupt 	RW	
				SBIE	Synch Break detection interrupt enable bit	0 : Disables Synch Break detection interrupt 1 : Enables Synch Break detection interrupt	RV
				BCIE	Bus collision detection interrupt enable bit	0 : Disables bus collision detection interrupt 1 : Enables bus collision detection interrupt	RV
				RXDSF	RXD0 input status flag	0 : RXD0 input enabled 1 : RXD0 input disabled	RC
				LSTART	Synch Break detection start bit ⁽¹⁾	When this bit is set to 1, timer RA input is enabled and RXD0 input is disabled. When read, the content is 0.	RW
				SBE	RXD0 input unmasking timing select bit (effective only in slave mode)	 0 : Unmasked after Synch Break is detected 1 : Unmasked after Synch Field measurement is completed 	RW
				MST	LIN operation mode setting bit ⁽²⁾	 0 : Slave mode (Synch Break detection circuit actuated) 1 : Master mode (timer RA output OR'ed w ith TXD0) 	RW
				LINE	LIN operation start bit	0 : Causes LIN to stop 1 : Causes LIN to start operating ⁽³⁾	RW

1. After setting the LSTART bit, confirm that the RXDSF flag is set to 1 before Synch Break input starts.

2. Before changing LIN operation modes, temporarily stop the LIN operation (LINE bit = 0).

3. Inputs to timer RA and UART0 are prohibited immediately after this bit is set to 1. (Refer to Figure 16.5 Example of Header Field Transmission Flowchart (1) and Figure 16.9 Example of Header Field Reception Flowchart (2).)

	tus Regist 64 63 62 61 60				
XX		Symbol	Address	After Reset	
		LINST	0107h	00h	
		Bit Symbol	Bit Name	Function	RW
		SFDCT	Synch Field measurement- completed flag	1 shows Synch Field measurement completed.	RO
		SBDCT	Synch Break detection flag	1 show s Synch Break detected or Synch Break generation completed.	RO
		BCDCT	Bus collision detection flag	1 shows Bus collision detected.	RO
		B0CLR	SFDCT bit clear bit	When this bit is set to 1, the SFDCT bit is set to 0. When read, the content is 0.	RW
		B1CLR	SBDCT bit clear bit	When this bit is set to 1, the SBDCT bit is set to 0. When read, the content is 0.	RW
		B2CLR	BCDCT bit clear bit	When this bit is set to 1, the BCDCT bit is set to 0. When read, the content is 0.	RW
		 Nothing is assigned. If necessary, set to 0. (b7-b6) When read, the content is 0. 		_	

Figure 16.3 LINST Register

16.4 Functional Description

16.4.1 Master Mode

Figure 16.4 shows typical operation of the hardware LIN when transmitting a header field in master mode. Figures 16.5 and 16.6 show an Example of Header Field Transmission Flowchart. When transmitting a header field, the hardware LIN operates as described below.

- (1) When the TSTART bit in the TRACR register for timer RA is set by writing 1 in software, the hardware LIN outputs "L" level from the TXD0 pin for the period that is set in registers TRAPRE and TRA for timer RA.
- (2) When timer RA underflows upon reaching the terminal count, the hardware LIN reverses the output of the TXD0 pin and sets the SBDCT flag in the LINST register to 1. Furthermore, if the SBIE bit in the LINCR register is set to 1, it generates a timer RA interrupt.
- (3) The hardware LIN transmits 55h via UART0.
- (4) The hardware LIN transmits an ID field via UART0 after it finishes sending 55h.
- (5) The hardware LIN performs communication for a response field after it finishes sending the ID field.

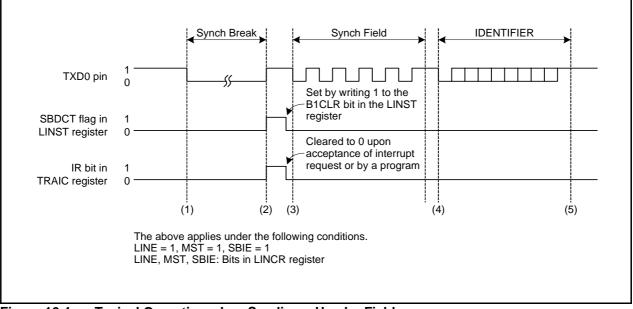
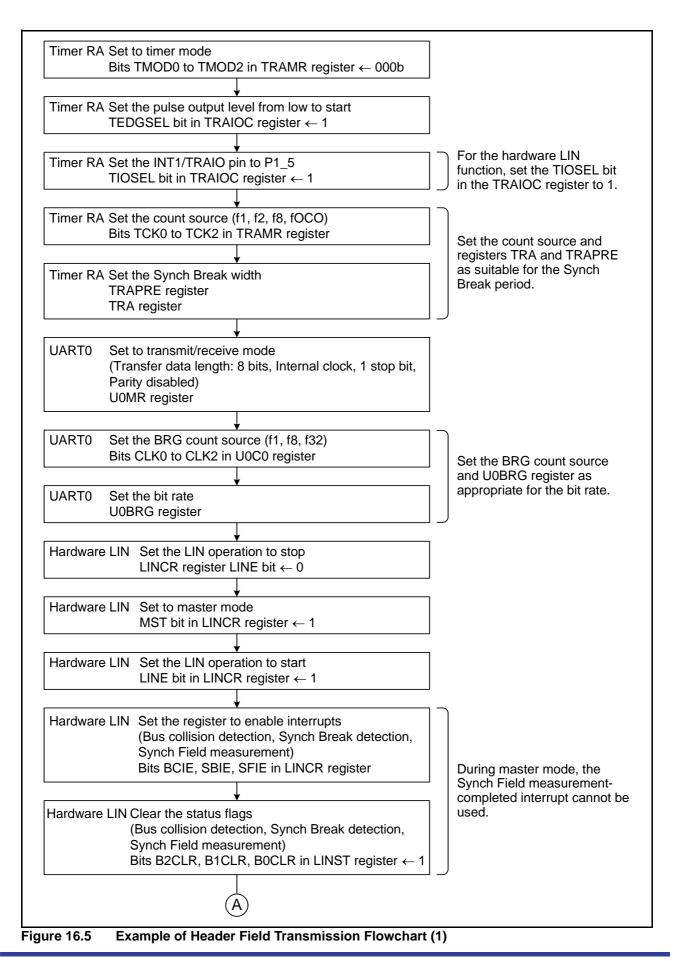



Figure 16.4 Typical Operation when Sending a Header Field

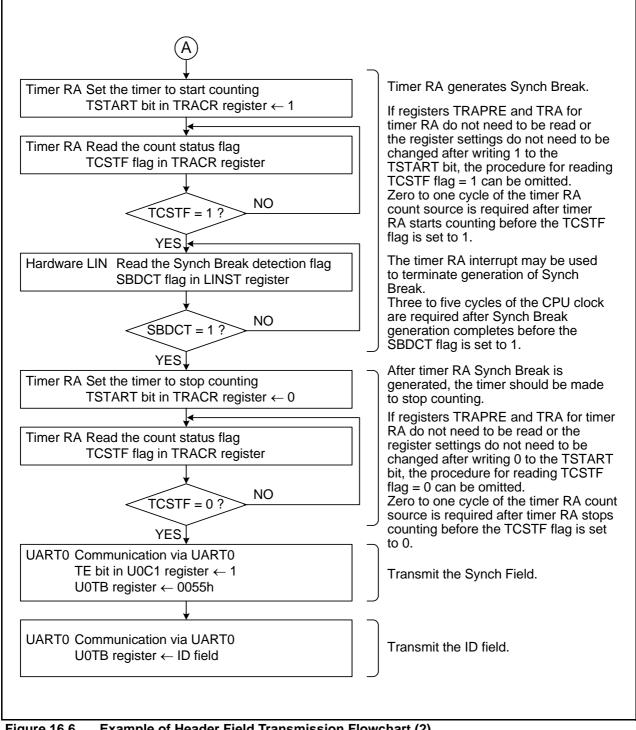


Figure 16.6 Example of Header Field Transmission Flowchart (2)

16.4.2 Slave Mode

Figure 16.7 shows typical operation of the hardware LIN when receiving a header field in slave mode. Figure 16.8 through Figure 16.10 show an Example of Header Field Transmission Flowchart. When receiving a header field, the hardware LIN operates as described below.

- (1) Synch Break detection is enabled by writing 1 to the LSTART bit in the LINCR register of the hardware LIN.
- (2) When "L" level is input for a duration equal to or greater than the period set in timer RA, the hardware LIN detects it as Synch Break. At this time, the SBDCT flag in the LINST register is set to 1. Furthermore, if the SBIE bit in the LINCR register is set to 1, the hardware LIN generates a timer RA interrupt. Then it goes to Synch Field measurement.
- (3) The hardware LIN receives a Synch Field (55h). At this time, it measures the period of the start bit and bits 0 to 6 by using timer RA. In this case, it is possible to select whether to input the Synch Field signal to RXD0 of UART0 by setting the SBE bit in the LINCR register accordingly.
- (4) The hardware LIN sets the SFDCT flag in the LINST register to 1 when it finishes measuring the Synch Field. Furthermore, if the SFIE bit in the LINCR register is set to 1, it generates a timer RA interrupt.
- (5) After it finishes measuring the Synch Field, calculate a transfer rate from the count value of timer RA and set to UART0 and registers TRAPRE and TRA of timer RA again. Then it receives an ID field via UART0.
- (6) The hardware LIN performs communication for a response field after it finishes receiving the ID field.

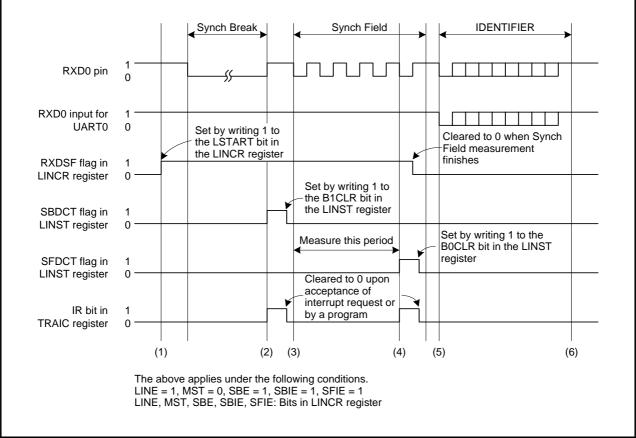


Figure 16.7 Typical Operation when Receiving a Header Field

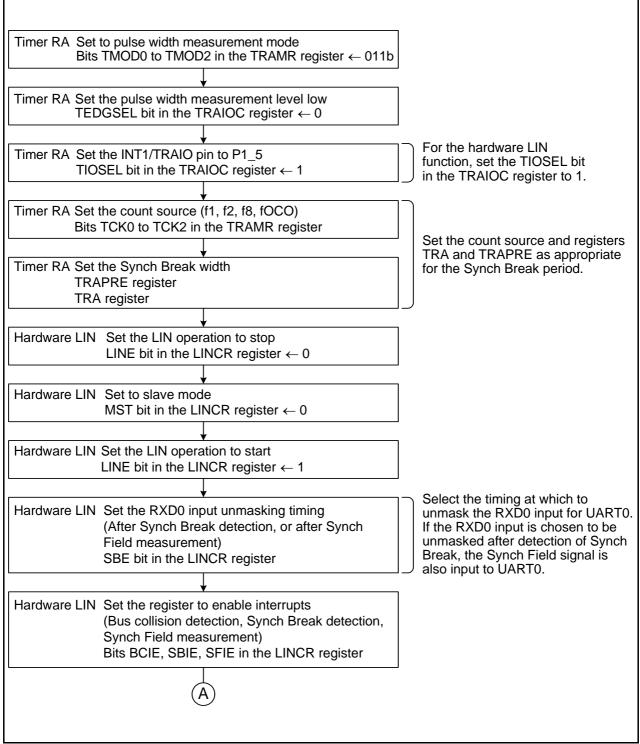


Figure 16.8 Example of Header Field Reception Flowchart (1)

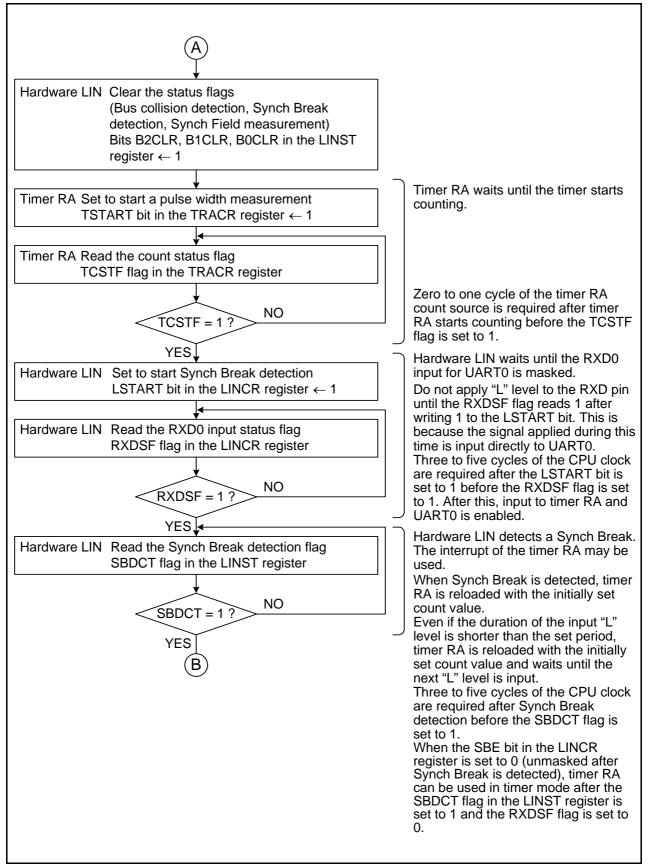


Figure 16.9 Example of Header Field Reception Flowchart (2)

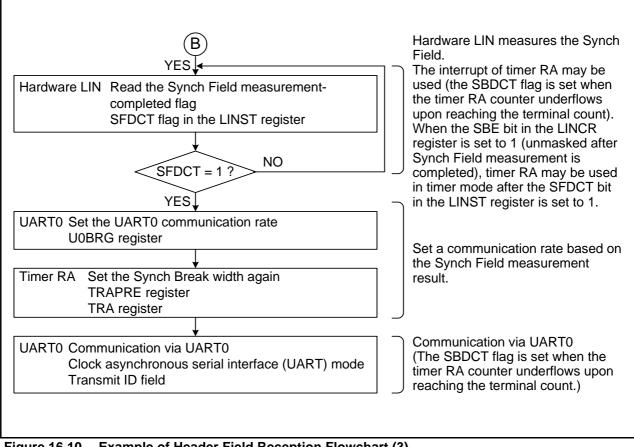


Figure 16.10 Example of Header Field Reception Flowchart (3)

16.4.3 Bus Collision Detection Function

The bus collision detection function can be used when UART0 is enabled for transmission (TE bit in the U0C1 register = 1).

Figure 16.11 shows Typical Operation when a Bus Collision is Detected.

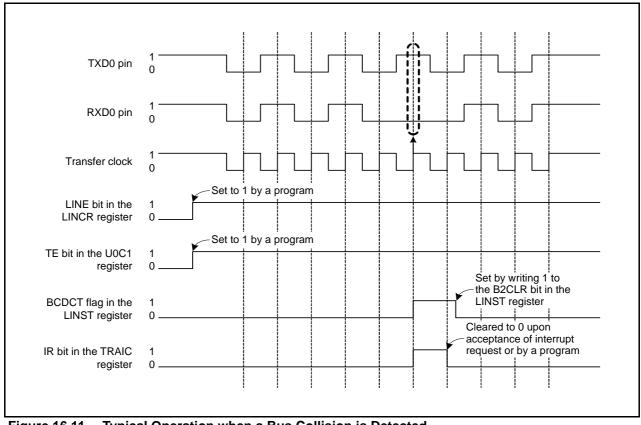


Figure 16.11 Typical Operation when a Bus Collision is Detected

16.4.4 Hardware LIN End Processing

Figure 16.12 shows an Example of Hardware LIN Communication Completion Flowchart. Use the following timing for hardware LIN end processing:

- If the hardware bus collision detection function is used Perform hardware LIN end processing after checksum transmission completes.
- If the bus collision detection function is not used Perform hardware LIN end processing after header field transmission and reception complete.

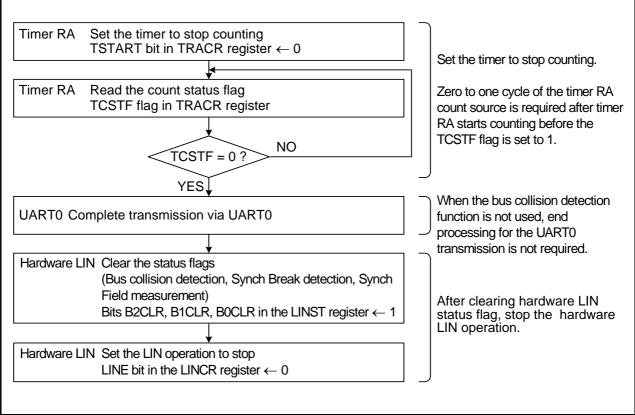


Figure 16.12 Example of Hardware LIN Communication Completion Flowchart

16.5 Interrupt Requests

There are four interrupt requests that are generated by the hardware LIN: Synch Break detection, Synch Break generation completed, Synch Field measurement completed, and bus collision detection. These interrupts are shared with timer RA.

Table 16.2 lists the Interrupt Requests of Hardware LIN.

Table 16.2 Interrupt Requests of Hardware LIN

Interrupt Request	Status Flag	Cause of Interrupt
Synch Break detection	SBDCT	Generated when timer RA has underflowed after measuring the "L" level duration of RXD0 input, or when a "L" level is input for a duration longer than the Synch Break period during communication.
Synch Break generation completed		Generated when "L" level output to TXD0 for the duration set by timer RA completes.
Synch Field measurement completed	SFDCT	Generated when measurement for 6 bits of the Synch Field by timer RA is completed.
Bus collision detection	BCDCT	Generated when the RXD0 input and TXD0 output values differed at data latch timing while UART0 is enabled for transmission.

16.6 Notes on Hardware LIN

For the time-out processing of the header and response fields, use another timer to measure the duration of time with a Synch Break detection interrupt as the starting point.

17. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter circuit with a capacitive coupling amplifier. The analog input shares pins P0_0 to P0_7, and P1_0 to P1_3. Therefore, when using these pins, ensure that the corresponding port direction bits are set to 0 (input mode).

When not using the A/D converter, set the VCUT bit in the ADCON1 register to 0 (Vref unconnected) so that no current will flow from the VREF pin into the resistor ladder. This helps to reduce the power consumption of the chip. The result of A/D conversion is stored in the AD register.

Table 17.1 lists the Performance of A/D converter. Figure 17.1 shows a Block Diagram of A/D Converter. Figures 17.2 and 17.3 show the A/D converter-related registers.

Item	Performance
A/D conversion method	Successive approximation (with capacitive coupling amplifier)
Analog input voltage ⁽¹⁾	0 V to AVCC
Operating clock $\phi AD^{(2)}$	$4.2 \text{ V} \le \text{AVCC} \le 5.5 \text{ V}$ f1, f2, f4, fOCO-F
	$2.7 \text{ V} \leq \text{AVCC} < 4.2 \text{ V}$ f2, f4, fOCO-F
Resolution	8 bits or 10 bits selectable
Absolute accuracy	AVCC = Vref = 5 V, ϕ AD = 10 MHz
	• 8-bit resolution ±2 LSB
	•10-bit resolution ±3 LSB
	AVCC = Vref = 3.3 V, ϕ AD = 10 MHz
	8-bit resolution ±2 LSB
	•10-bit resolution ±5 LSB
Operating mode	One-shot and repeat ⁽³⁾
Analog input pin	12 pins (AN0 to AN11)
A/D conversion start condition	Software trigger
	Set the ADST bit in the ADCON0 register to 1 (A/D conversion starts)
Conversion rate per pin	Without sample and hold function
	8-bit resolution: 49\u00f6AD cycles, 10-bit resolution: 59\u00f6AD cycles
	With sample and hold function
	8-bit resolution: 28¢AD cycles, 10-bit resolution: 33¢AD cycles

Table 17.1 Performance of A/D converter

NOTES:

 The analog input voltage does not depend on use of a sample and hold function. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

- 2. When 2.7 V \leq AVCC \leq 5.5 V, the frequency of ϕ AD must be 10 MHz or below. Without a sample and hold function, the ϕ AD frequency should be 250 kHz or above. With a sample and hold function, the ϕ AD frequency should be 1 MHz or above.
- 3. In repeat mode, only 8-bit mode can be used.

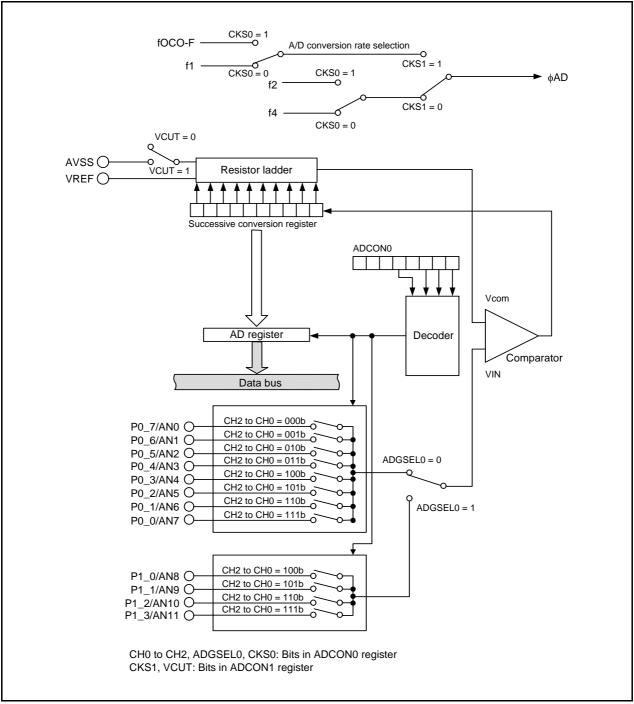


Figure 17.1 Block Diagram of A/D Converter

/D Cont					
0		Symbol	Address	After Reset	
ТТТТ		A DCON0	00D6h	00h	
		Bit Symbol	Bit Name	Function	RW
		CH0	Analog input pin select bits	(Note 4)	RW
		CH1			RW
		CH2			RW
		MD	A/D operating mode select bit ⁽²⁾	0 : One-shot mode 1 : Repeat mode	RW
		ADGSEL0	A/D input group select bit ⁽⁴⁾	0 : Selects port P0 group (AN0 to AN7) 1 : Selects port P1 group (AN8 to AN11)	RW
		(b5)	Reserved bit	Set to 0.	RW
		ADST	A/D conversion start flag	0 : Stops A/D conversion 1 : Starts A/D conversion	RW
		CKS0	Frequency select bit 0	[When CKS1 in ADCON1 register = 0] 0 : Select f4 1 : Select f2 [When CKS1 in ADCON1 register = 1] 0 : Select f1 ⁽³⁾ 1 : Select fOCO-F	RW

2. When changing A/D operation mode, set the analog input pin again.

3. Set øAD frequency to 10 MHz or below.

4. The analog input pin can be selected according to a combination of bits CH0 to CH2 and the ADGSEL0 bit.

0 1		0
CH2 to CH0	ADGSEL0 = 0	ADGSEL0 = 1
000b	A NO	Do not set.
001b	AN1	
010b	AN2	
011b	AN3	
100b	AN4	AN8
101b	AN5	AN9
110b	AN6	AN10
111b	AN7	AN11

Figure 17.2 ADCON0 Register

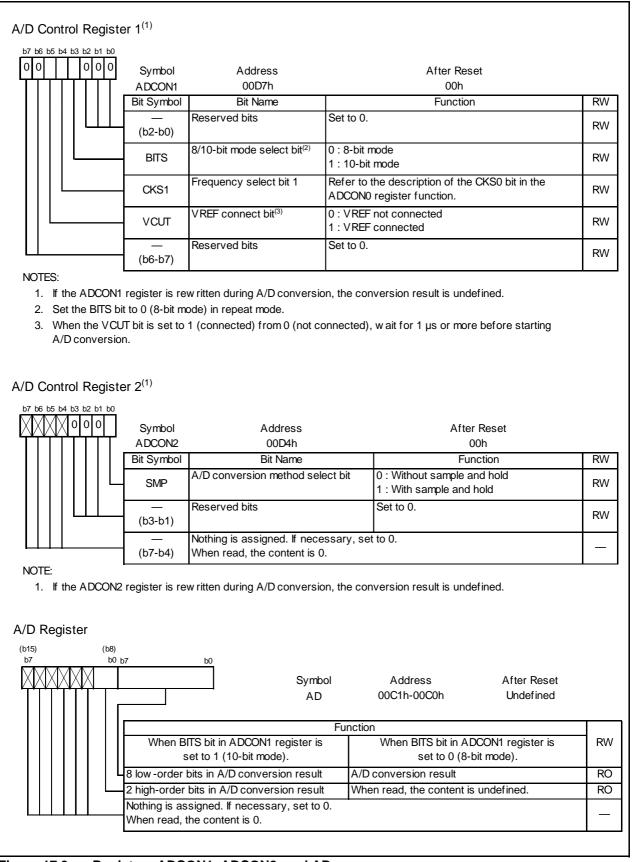


Figure 17.3 Registers ADCON1, ADCON2, and AD

17.1 One-Shot Mode

In one-shot mode, the input voltage of one selected pin is A/D converted once.

Table 17.2 lists the Specification of One-Shot Mode. Figure 17.4 shows the ADCON0 Register in One-Shot Mode and Figure 17.5 shows the ADCON1 Register in One-Shot Mode.

Table 17.2	Specification o	of One-Shot Mode
------------	-----------------	------------------

Item	Specification
Function	The input voltage of one pin selected by bits CH2 to CH0 and ADGSEL0 is
	A/D converted once
Start condition	Set the ADST bit to 1 (A/D conversion starts)
Stop condition	 A/D conversion completes (ADST bit is set to 0)
	Set the ADST bit to 0
Interrupt request generation	A/D conversion completes
timing	
Input pin	Select one of AN0 to AN11
Reading of A/D conversion	Read AD register
result	

7 b6 b	5 b4 b	3 b2 b1 b0				
(0 0	D	Symbol	Address	After Reset	
			ADCON0	00D6h	00h	
			Bit Symbol	Bit Name	Function	RV
			СНО	Analog input pin select bits	(Note 4)	RV
			CH1			RV
			CH2			RV
			MD	A/D operating mode select bit ⁽²⁾	0 : One-shot mode	RV
			ADGSEL0	A/D input group select bit ⁽⁴⁾	0 : Selects port P0 group (AN0 to AN7) 1 : Selects port P1 group (AN8 to AN11)	RV
			(b5)	Reserved bit	Set to 0.	RV
			ADST	A/D conversion start flag	0 : Stops A/D conversion 1 : Starts A/D conversion	RV
			- CKS0	Frequency select bit 0	[When CKS1 in ADCON1 register = 0] 0 : Select f4 1 : Select f2 [When CKS1 in ADCON1 register = 1] 0 : Select f1 ⁽³⁾ 1 : Select fOCO-F	RV

If the ADCON0 register is rew ritten during A/D conversion, the conversion result is undefined.
 After changing the A/D operating mode, select the analog input pin again.

3. Set ØAD frequency to 10 MHz or below .

4. The analog input pin can be selected according to a combination of bits CH0 to CH2 and the ADGSEL0 bit.

0 = 0 ADGSEL0 = 1 Do not set.
2
3
4 AN8
5 AN9
6 AN10

Figure 17.4	ADCON0 Register in One-Shot Mode
-------------	----------------------------------

0 0 1	0000	Symbol ADCON1	Address 00D7h	After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		 (b2-b0)	Reserved bits	Set to 0.	RW
		BITS	8/10-bit mode select bit	0 : 8-bit mode 1 : 10-bit mode	RW
		CKS1	Frequency select bit 1	Refer to the description of the CKS0 bit in the ADCON0 register function.	RW
		VCUT	VREF connect bit ⁽²⁾	1 : VREF connected	RW
		 (b6-b7)	Reserved bits	Set to 0.	RW

A/D conversion.

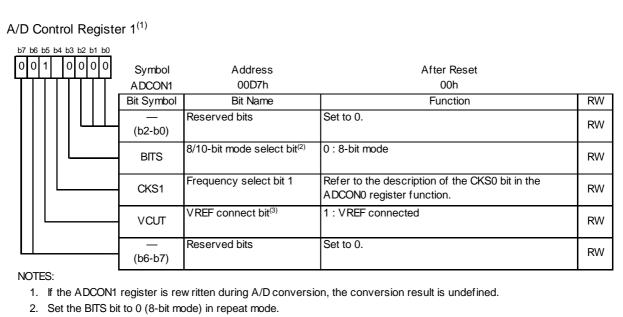
17.2 Repeat Mode

In repeat mode, the input voltage of one selected pin is A/D converted repeatedly.

Table 17.3 lists the Repeat Mode Specifications. Figure 17.6 shows the ADCON0 Register in Repeat Mode and Figure 17.7 shows ADCON1 Register in Repeat Mode.

Table 17.3	Repeat Mode Specifications
------------	----------------------------

Item	Specification
Function	The Input voltage of one pin selected by bits CH2 to CH0 and ADGSEL0 is
	A/D converted repeatedly
Start conditions	Set the ADST bit to 1 (A/D conversion starts)
Stop condition	Set the ADST bit to 0
Interrupt request generation	Not generated
timing	
Input pin	Select one of AN0 to AN11
Reading of result of A/D	Read AD register
converter	

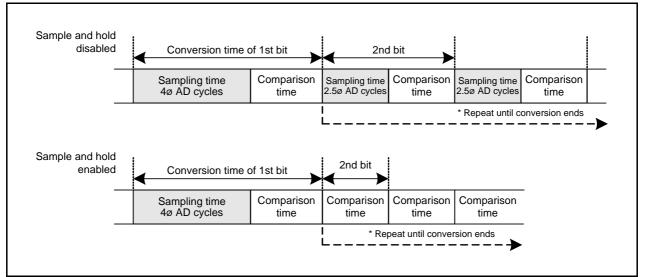

b7 b6 b5 b4 b3 b2 b1 b0				
0 1	Symbol	Address	After Reset	
	A DCON0	00D6h	00h	
	Bit Symbol	Bit Name	Function	R\
	CH0	Analog input pin select bits	(Note 4)	R
	CH1			R\
└──	CH2			R\
	- MD	A/D operating mode select bit ⁽²⁾	1 : Repeat mode	R\
	ADGSEL0	A/D input group select bit ⁽⁴⁾	0 : Selects port P0 group (AN0 to AN7) 1 : Selects port P1 group (AN8 to AN11)	R\
	(b5)	Reserved bit	Set to 0.	R\
	ADST	A/D conversion start flag	0 : Stops A/D conversion 1 : Starts A/D conversion	R\
	- CKS0	Frequency select bit 0	[When CKS1 in ADCON1 register = 0] 0 : Select f4 1 : Select f2 [When CKS1 in ADCON1 register = 1] 0 : Select f1 ⁽³⁾ 1 : Do not set.	R\

- 1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is undefined.
- 2. After changing A/D operation mode, select the analog input pin again.
- 3. Set øAD frequency to 10 MHz or below .
- 4. The analog input pin can be selected according to a combination of bits CH0 to CH2 and the ADGSEL0 bit.

CH2 to CH0	ADGSEL0 = 0	ADGSEL0 = 1
000b	A NO	Do not set.
001b	AN1	
010b	AN2	
011b	AN3	
100b	AN4	AN8
101b	AN5	AN9
110b	AN6	AN10
111b	AN7	AN11

Figure 17.6

ADCON0 Register in Repeat Mode

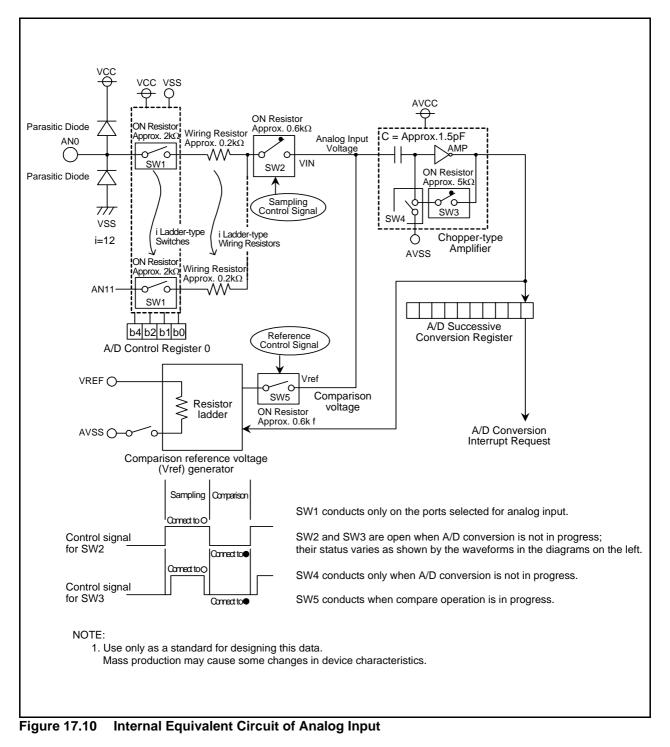

3. When the VCUT bit is set to 1 (connected) from 0 (not connected), w ait for 1 μ s or more before starting A/D conversion.

17.3 Sample and Hold

When the SMP bit in the ADCON2 register is set to 1 (sample and hold function enabled), the A/D conversion rate per pin increases. The sample and hold function is available in all operating modes. Start A/D conversion after selecting whether the sample and hold circuit is to be used or not.

Figure 17.8 shows a Timing Diagram of A/D Conversion.

17.4 A/D Conversion Cycles


Figure 17.9 shows the A/D Conversion Cycles.

			Conversion tin	ne at the 1st bit		me at the 2nd ne follows	End process
A/D Conversion M	lode	Conversion Time	Sampling Time	Comparison Time	Sampling Time	Comparison Time	End process
Without Sample & Hold	8 bits	49¢AD	4¢AD	2.0¢AD	2.5¢AD	2.5¢AD	8.0øAD
Without Sample & Hold	10 bits	59¢AD	4¢AD	2.0¢AD	2.5¢AD	2.5¢AD	8.0¢AD
With Sample & Hold	8 bits	28¢AD	4¢AD	2.5¢AD	0.0¢AD	2.5¢AD	4.0¢AD
With Sample & Hold	10 bits	33¢AD	4¢AD	2.5¢AD	0.0¢AD	2.5¢AD	4.0¢AD

17.5 Internal Equivalent Circuit of Analog Input

Figure 17.10 shows the Internal Equivalent Circuit of Analog Input.

17.6 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 17.11 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, internal resistance of microcomputer be R, precision (error) of the A/D converter be X, and the resolution of A/D converter be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

VC is generally VC = VIN
$$\left\{1 - e^{-\frac{1}{C(R0 + R)}t}\right\}$$

And when t = T, VC = VIN $-\frac{X}{Y}$ VIN = VIN $\left(1 - \frac{X}{Y}\right)$
 $e^{-\frac{1}{C(R0 + R)}T} = \frac{X}{Y}$
 $-\frac{1}{C(R0 + R)}T = \ln \frac{X}{Y}$
Hence, R0 = $-\frac{T}{C \bullet \ln \frac{X}{Y}} - R$

Figure 17.11 shows Analog Input Pin and External Sensor Equivalent Circuit. When the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB.

When f(XIN) = 10 MHz, T = 0.25 µs in the A/D conversion mode without sample and hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

T = 0.25 µs, R = 2.8 kΩ, C = 6.0 pF, X = 0.1, and Y = 1024. Hence,
R0=
$$-\frac{0.25 \times 10^{-6}}{6.0 \times 10^{-12} \bullet \ln \frac{0.1}{1024}} -2.8 \times 10^3 \approx 1.7 \times 10^3$$

Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1LSB or less, is approximately $1.7 \text{ k}\Omega$ maximum.

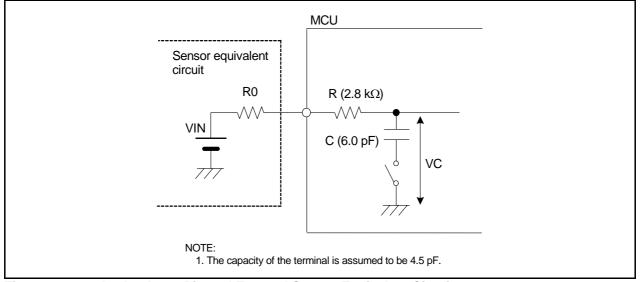


Figure 17.11 Analog Input Pin and External Sensor Equivalent Circuit

17.7 Notes on A/D Converter

- Write to each bit (other than bit 6) in the ADCON0 register, each bit in the ADCON1 register, or the SMP bit in the ADCON2 register when A/D conversion is stopped (before a trigger occurs).
- When the VCUT bit in the ADCON1 register is changed from 0 (VREF not connected) to 1 (VREF connected), wait for at least 1 μ s before starting the A/D conversion.
- After changing the A/D operating mode, select an analog input pin again.
- When using the one-shot mode, ensure that A/D conversion is completed before reading the AD register. The IR bit in the ADIC register or the ADST bit in the ADCON0 register can be used to determine whether A/D conversion is completed.
- When using the repeat mode, select the frequency of the A/D converter operating clock \u03c6AD or more for the CPU clock during A/D conversion.

Do not select the fOCO-F for the ϕ AD.

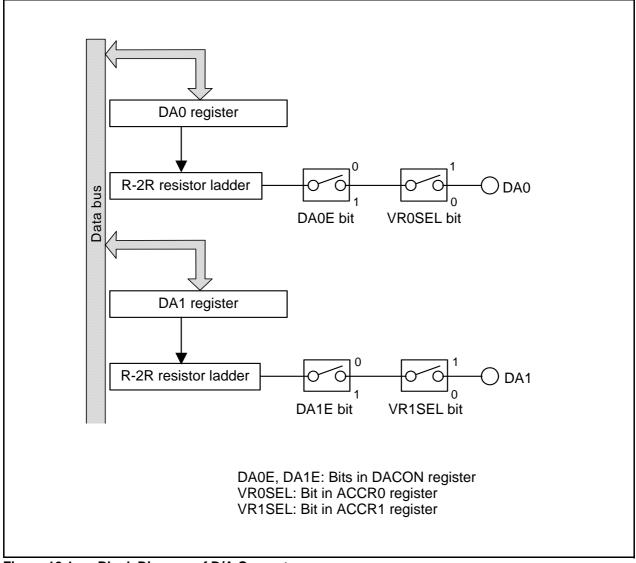
- If the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program and A/D conversion is forcibly terminated during an A/D conversion operation, the conversion result of the A/D converter will be undefined. If the ADST bit is set to 0 by a program, do not use the value of the AD register.
- Connect 0.1 μ F capacitor between the P4_2/VREF pin and AVSS pin.
- Do not enter stop mode during A/D conversion.
- Do not enter wait mode when the CM02 bit in the CM0 register is set to 1 (peripheral function clock stops in wait mode) during A/D conversion.

18. D/A Converter

The D/A converters are 8-bit R-2R type units. The D/A converter 0 and D/A converter 1 are two independent D/A converters.

D/A conversion is performed by writing to the DAi register (i = 0 or 1). To output the conversion result, set the DAiE bit in the DACON register to 1 (output enabled) and set the VRiSEL bit in the ACCRi register to 0 (AVREFi pin input). Before using D/A conversion, the corresponding port direction bit must be set to 0 (input mode). Setting the DAiE bit to 1 removes the pull-up from the corresponding port.

The output analog voltage (V) is determined by the setting value n (n: decimal) of the DAi register.


 $V = Vref \times n/256$ (n = 0 to 255)

Vref: Reference voltage

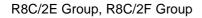

Table 18.1 lists the D/A Converter Specifications. Figure 18.1 shows the Block Diagram of D/A Converter. Figures 18.2 and 18.3 show the D/A converter related registers. Figure 18.4 shows the D/A Converter Equivalent Circuit.

Table 18.1	D/A Converter	Specifications
------------	---------------	----------------

Item	Performance
D/A conversion method	R-2R method
Resolution	8 bits
Analog output pins	2 (DA0 and DA1)

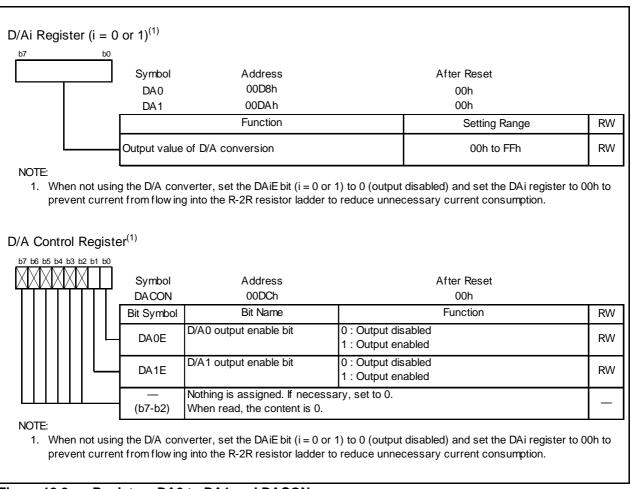
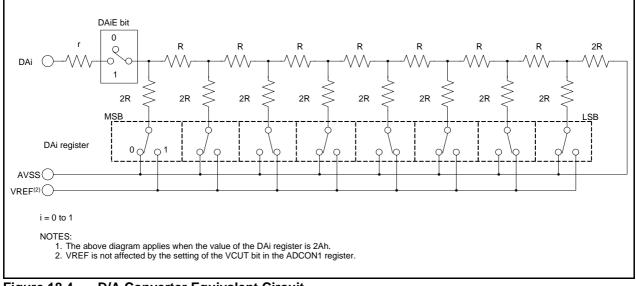


Figure 18.2 Registers DA0 to DA1 and DACON

Comparator i Contro	ol Register	(i = 0 or 1)		
b7 b6 b5 b4 b3 b2 b1 b0				
	Symbol	Address	After Reset	
	ACCR0	0174h	00001000b	
	ACCR1	0175h	00001000b	
	Bit Symbol	Bit Name	Function	RW
	CMiE	Comparator i enable operation bit	0 : Disable operation 1 : Enable operation	RW
	CMiOE	ACOUTi output enable bit	0 : Disable output 1 : Enable output	RW
	VRiSEL	Comparator i reference input select bit	0 : AVREFi pin input 1 : D/A converter i output ⁽¹⁾	RW
	CMiLV	Comparison result monitor flag	0 : ACMPi input < reference input 1 : ACMPi input > reference input	RO
	- FLTi0	Comparator i digital filter select bits	^{b5 b4} 0 0 : No filter 0 1 : Filter w ith f2 sampling	RW
	FLTi1		1 0 : Filter w ith f8 sampling 1 1 : Filter w ith f32 sampling	RW
	CMIE	Comparator i interrupt enable bit	0 : Disable interrupt by CMiF bit 1 : Enable interrupt by CMiF bit	RW
	CMiF	Comparator i interrupt flag	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ [Source for setting this bit to 1] When the comparison result is changed	RW

NOTES:

1. When setting the VRiSEL bit to 1 (D/A converter i output), set the DAiE bit in the DACON register to 1 (output enabled). How ever, at this time, the D/A conversion result is not output from DAi pin.


2. The writing results are as follow s:

• This bit is set to 0 when the read result is 1 and 0 is written to the same bit.

• This bit remains unchanged even if the read result is 0 and 0 is written to the same bit. (This bit remains 1 even if it is set to 1 from 0 after reading, and writing 0.)

• This bit remains unchanged if 1 is written to it.

19. Comparator

The comparators compare a reference input voltage and an analog input voltage. Comparator 0 and comparator 1 are two independent comparators.

19.1 Overview

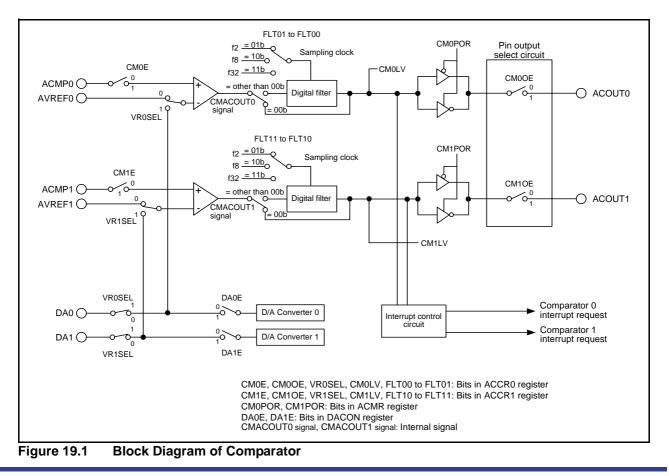

The comparison result of the reference input voltage and analog input voltage can be read by software. The result also can be output from the ACOUTi (i = 0 or 1) pin. An input to the AVREFi pin or output from D/A converter i can be selected as the reference input voltage.

Table 19.1 lists the Specifications for Comparator, Figure 19.1 shows the Block Diagram of Comparator, and Table 19.2 lists the I/O Pins.

Item	Specification
Analog input voltage	Input voltage to ACMPi pin
Reference input voltage	Input voltage to AVREFi pin or output voltage of D/A converter i
Comparison result	Read the CMiLV bit in the ACCRi register
Interrupt request generation timing	When the comparison result changes
Select functions	 The comparison result can be output from the ACOUTi pin. ACOUTi pin output polarity Whether the comparison result output is inverted or not inverted can be selected. Digital filter function For the CMACOUTi signal (comparison result), whether the digital filter is applied or not and the sampling frequency can be selected.

 Table 19.1
 Specifications for Comparator

i = 0 or 1

Table 19.2 I/O Pins

Pin Name	I/O	Function
ACMP0	Input	Comparator 0 analog pin
AVREF0	Input	Comparator 0 reference voltage pin
ACOUT0	Output	Comparator 0 comparison result output pin
ACMP1	Input	Comparator 1 analog pin
AVREF1	Input	Comparator 1 reference voltage pin
ACOUT1	Output	Comparator 1 comparison result output pin

19.2 Register Functions

Figure 19.2 shows the Registers ACCR0 to ACCR1 and Figure 19.3 shows the ACMR Register.

	5 b4 b3 b2	UD I'D				
			Symbol	Address	After Reset	
			ACCR0	0174h	00001000b	
			ACCR1	0175h	00001000b	
			Bit Symbol	Bit Name	Function	RW
			CMiE	Comparator i enable operation bit	0 : Disable operation 1 : Enable operation	RW
			CMiOE	ACOUTi output enable bit	0 : Disable output 1 : Enable output	RW
			VRiSEL	Comparator i reference input select bit	0 : AVREFi pin input 1 : D/A converter i output ⁽¹⁾	RW
			CMiLV	Comparison result monitor flag	0 : ACMPi input < reference input 1 : ACMPi input > reference input	RO
			FLTi0	Comparator i digital filter select bits	^{b5 b4} 0 0 : No filter 0 1 : Filter w ith f2 sampling	RW
		FLTi1		1 0 : Filter w ith f8 sampling 1 1 : Filter w ith f32 sampling	RW	
			CMIE	Comparator i interrupt enable bit	0 : Disable interrupt by CMiF bit 1 : Enable interrupt by CMiF bit	RW
			CMiF	Comparator i interrupt flag	[Source for setting this bit to 0] Write 0 after read ⁽²⁾ [Source for setting this bit to 1] When the comparison result is changed	RW

2. The writing results are as follow s:

• This bit is set to 0 when the read result is 1 and 0 is written to the same bit.

- This bit remains unchanged even if the read result is 0 and 0 is written to the same bit. (This bit remains 1 even if it is set to 1 from 0 after reading, and writing 0.)
- This bit remains unchanged if 1 is written to it.

Figure 19.2 Registers ACCR0 to ACCR1

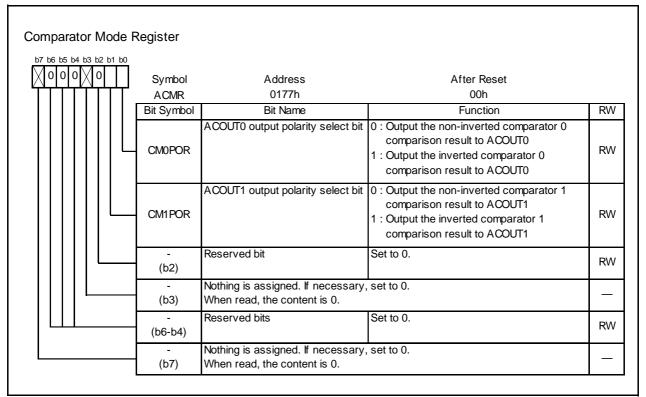


Figure 19.3 ACMR Register

19.3 Functional Description

Comparator 0 and comparator 1 operate independently. Their operations are the same. Table 19.3 lists the Procedure for Setting Registers Associated with Comparator

Step	Register	Bit	Setting Value
1	Function selection of ACMPi, AVREFi, and ACOUTi pin. Refer to 7.4 Port Setting .		AVREFi, and ACOUTi pin. Refer to 7.4 Port Setting.
	Set registers	s and bits other tha	an listed in step 2 and the following steps.
2	ACMR	CMiPOR	When using the ACOUTi output: Select the ACOUTi output polarity.
3	ACCRi	FLTi1 to FLTi0	Select to enable or disable the filter, and select the sampling clock
			frequency.
		VRiSEL	Select the reference input.
4	DACON	DAiE	When setting the D/A converter i output voltage to reference
			voltage: 1 (D/A output enabled)
5	ACCRi	CMiE	1 (operation enabled)
6	Wait until co	mparator stability	time (max. 10 μs)
7	ACCRi	CMiF	Read (dummy read to initialize the interrupt flag)
8	ACCRi	CMiOE	When using the ACOUTi output: 1 (ACOUTi output enabled)
		CMilE	When using interrupts: 1 (interrupt enabled)
		CMiF	When using interrupts: 0 (no interrupt requested: Initialization)
9	CMilC	ILVL2 to ILVL0	When using interrupts: Select the interrupt priority level.
		IR	When using interrupts: 0 (no interrupt requested: Initialization)
		CMiIE CMiF ILVL2 to ILVL0	When using interrupts: 1 (interrupt enabled) When using interrupts: 0 (no interrupt requested: Initializat When using interrupts: Select the interrupt priority level.

Table 19.3	Procedure for Setting Registers Associated with Comparator
------------	--

i = 0 or 1

Figure 19.4 shows an Operating Example of Comparator i (i = 0 or 1).

If the analog input voltage is higher than the reference input voltage, the CMiLV bit in the ACCRi register is set to 1. If the analog input voltage is lower than the reference input voltage, the CMiLV bit is set to 0. When the comparison result changes, the CMiF bit in the ACCRi register is set to 1. If the value of the CMiIE bit in the ACCRi register is 1 (interrupt by CMiF bit enabled) at this time, a comparator i interrupt request is generated. Refer to 19.4 Comparator 0 Interrupt and Comparator 1 Interrupt for information of interrupts.

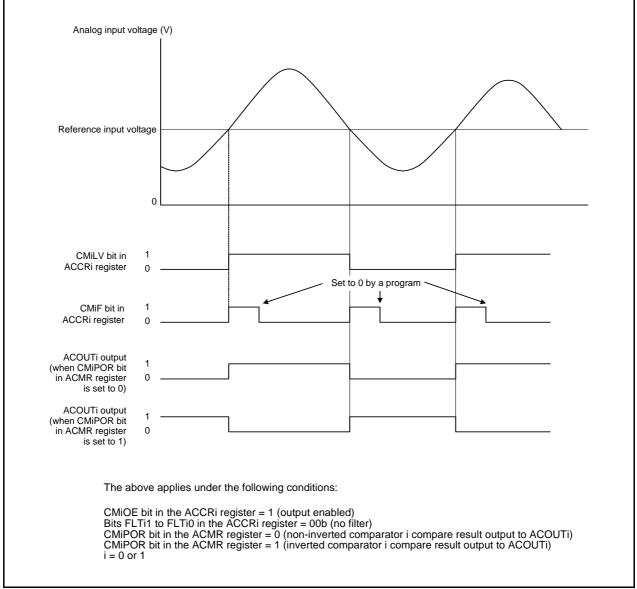
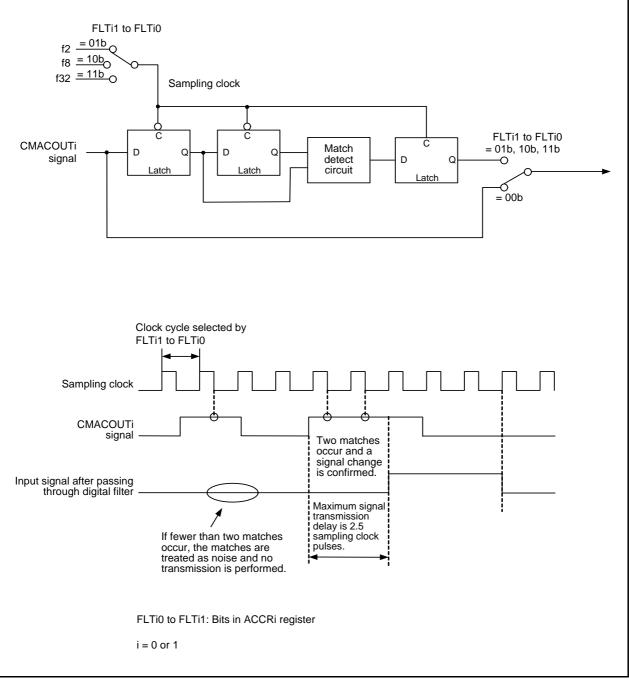


Figure 19.4 Operating Example of Comparator i (i = 0 or 1)

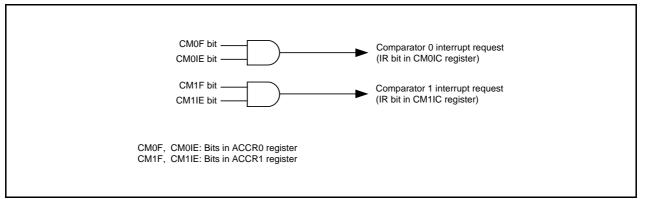

19.3.1 Comparison Result Output

When the CMiOE bit in the ACCRi register is set to 1 (output enabled), the comparison result can be output from the ACOUTi pin. Also, the CMiPOR bit in the ACMR register can be used to select whether the ACOUTi pin output polarity is inverted or not inverted.

19.3.2 Digital Filter

The digital filter can be applied to the CMACOUTi (i = 0 or 1) signal.

The CMACOUTi signal is sampled, and the level is considered to be determined when two matches occur. The digital filter function and sampling frequency are selected using bits FLTi0 to FLTi1 in the ACCRi register. Figure 19.5 shows a Block Diagram of Digital Filter.


19.4 Comparator 0 Interrupt and Comparator 1 Interrupt

Comparator 0 and Comparator 1 generate interrupt request from two sources. The comparator i (i = 0 or 1) interrupt uses the corresponding CMiIC register (bits IR and ILVL0 to ILVL2) and vector. When the comparison result changes, the CMiF bit in the ACCRi register is set to 1. If the value of the CMiIE bit in the ACCRi register is 1 (interrupt by CMiF bit enabled) at this time, a comparator i interrupt request is generated. Table 19.4 lists the Registers and Bits Associated with Comparator Interrupt, and Figure 19.6 is a Block Diagram of Comparator Interrupt.

Table 19.4 Re	gisters and Bits Associated with Comparator Interrupt
---------------	---

Comparator i Control Register,	Comparator i Interrupt Control Register,	Comparator i Interrupt
Comparator i Interrupt Flag	Comparator i Interrupt Enable Bit	Control Register
CMiF bit in ACCRi register	CMiE bit in ACCRi register	CMilC

i = 0 or 1

Figure 19.6 Block Diagram of Comparator Interrupt

Like other maskable interrupts, the comparator i interrupt is controlled by the combination of the I flag, IR bit, bits ILVL0 to ILVL2, and IPL.

However, the existence of the bits CMiF and CMiIE results in the following differences from other maskable interrupts.

- The IR bit in the CMiIC register is set to 1 (interrupt requested) when the CMiF bit in the ACCRi register is set to 1 and the CMiIE bit in the ACCRi register is set to 1 (interrupt enabled).
- The IR bit is set to 0 (no interrupt requested) when the CMiF bit or CMiIE bit is set to 0, or both are set to 0. In other words, the interrupt request is not maintained if the IR bit is once set to 1 but the interrupt is not acknowledged.
- The CMiF bit is not automatically set to 0 when an interrupt is acknowledged. Set it to 0 within the interrupt routine. Refer to **Figure 19.2 Registers ACCR0 to ACCR1**, for the procedure for setting these bits to 0.

Refer to **12.1.6 Interrupt Control**, for details of the CMiIC register and **12.1.5.2 Relocatable Vector Tables**, for information on interrupt vectors.

20. Flash Memory Version

20.1 Overview

In the flash memory, rewrite operations to the flash memory can be performed in three modes: CPU rewrite, standard serial I/O, and parallel I/O.

Table 20.1 lists the Flash Memory Performance (refer to **Table 1.1**, **Table 1.2**, **Table 1.3**, and **Table 1.4 Specifications** for items not listed in Table 20.1).

Table 20.1	Flash Memory	Performance
------------	--------------	-------------

Item		Specification	
Flash memory operating mode		3 modes (CPU rewrite, standard serial I/O, and parallel I/O)	
Division of eras	se block	Refer to Figure 20.1 and Figure 20.2	
Programming I	method	Byte unit	
Erase method		Block erase	
Programming a	and erasure control method ⁽³⁾	Program and erase control by software command	
Rewrite control method		Rewrite control for blocks 0 and 1 by FMR02 bit in FMR0 register	
		Rewrite control for block 0 by FMR15 bit and block 1 by FMR16 bit in FMR1 register	
Number of commands		5 commands	
Programming and erasure endurance ⁽¹⁾	Blocks 0 and 1 (program ROM)	R8C/2E Group: 100 times; R8C/2F Group: 1,000 times	
	Blocks A and B (data flash) ⁽²⁾	10,000 times	
ID code check function		Standard serial I/O mode supported	
ROM code protect		Parallel I/O mode supported	

NOTES:

1. Definition of programming and erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1-Kbyte block, and then the block is erased, the erase count stands at one. When performing 100 or more rewrites, the actual erase count can be reduced by executing programming operations in such a way that all blank areas are used before performing an erase operation. Avoid rewriting only particular blocks and try to average out the programming and erasure endurance of the blocks. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

- 2. Blocks A and B are implemented only in the R8C/2F group.
- 3. To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

Table 20.2	Flash Memory	Rewrite Modes
------------	--------------	---------------

Flash memory Rewrite mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode
Function	User ROM area is rewritten by executing software commands from the CPU. EW0 mode: Rewritable in the RAM EW1 mode: Rewritable in flash memory	User ROM area is rewritten by a dedicated serial programmer.	User ROM area is rewritten by a dedicated parallel programmer.
Areas which can be rewritten	User ROM area	User ROM area	User ROM area
Operating mode	Single chip mode	Boot mode	Parallel I/O mode
ROM Programmer	None	Serial programmer	Parallel programmer

20.2 Memory Map

The flash memory contains a user ROM area and a boot ROM area (reserved area). Figure 20.1 shows the Flash Memory Block Diagram for R8C/2E Group. Figure 20.2 shows a Flash Memory Block Diagram for R8C/2F Group.

The user ROM area of the R8C/2F Group contains an area (program ROM) which stores MCU operating programs and blocks A and B (data flash) each 1 Kbyte in size.

The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite mode and standard serial I/O and parallel I/O modes.

When rewriting blocks 0 and 1 in CPU rewrite mode, set the FMR02 bit in the FMR0 register to 1 (rewrite enabled). When the FMR15 bit in the FMR1 register is set to 0 (rewrite enabled), block 0 is rewritable. When the FMR16 bit is set to 0 (rewrite enabled), block 1 is rewritable.

The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area and the user ROM area share the same address, but have separate memory areas.

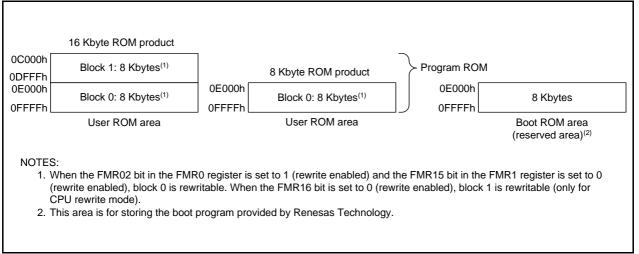
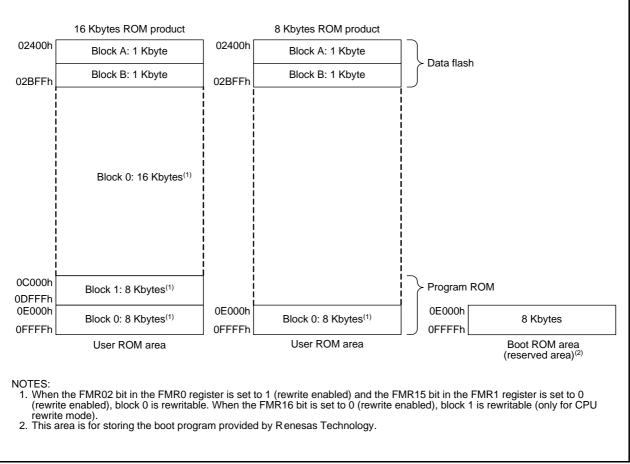
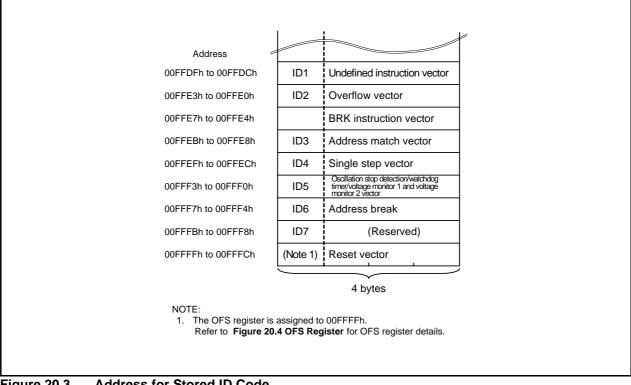


Figure 20.1 Flash Memory Block Diagram for R8C/2E Group




Figure 20.2 Flash Memory Block Diagram for R8C/2F Group

20.3 Functions to Prevent Rewriting of Flash Memory

Standard serial I/O mode has an ID code check function, and parallel I/O mode has a ROM code protect function to prevent the flash memory from being read or rewritten easily.

20.3.1 ID Code Check Function

This function is used in standard serial I/O mode. Unless the flash memory is blank, the ID codes sent from the programmer and the ID codes written in the flash memory are checked to see if they match. If the ID codes do not match, the commands sent from the programmer are not acknowledged. The ID codes consist of 8 bits of data each, the areas of which, beginning with the first byte, are 00FFDFh, 00FFE3h, 00FFEBh, 00FFEFh, 00FFF3h, 00FFF7h, and 00FFFBh. Write programs in which the ID codes are set at these addresses and write them to the flash memory.

20.3.2 ROM Code Protect Function

The ROM code protect function disables reading or changing the contents of the on-chip flash memory by the OFS register in parallel I/O mode. Figure 20.4 shows the OFS Register.

The ROM code protect function is enabled by writing 0 to the ROMCP1 bit and 1 to the ROMCR bit. It disables reading or changing the contents of the on-chip flash memory.

Once ROM code protect is enabled, the content in the internal flash memory cannot be rewritten in parallel I/O mode. To disable ROM code protect, erase the block including the OFS register with CPU rewrite mode or standard serial I/O mode.

b7 b6 b5	b4 b3 b2 b1 b0	Symbol	Address	When Shipping	
	┶┱┹┰┹┰┹	OFS	0FFFFh	FFh ⁽²⁾	
		Bit Symbol	Bit Name	Function	R\
		WDTON	Watchdog timer start select bit	0 : Starts w atchdog timer automatically after reset 1 : Watchdog timer is inactive after reset	R\
		(b1)	Reserved bit	Set to 1.	R۱
		ROMCR	ROM code protect disabled bit	0 : ROM code protect disabled 1 : ROMCP1 enabled	R۱
		ROMCP1	ROM code protect bit	0 : ROM code protect enabled 1 : ROM code protect disabled	R\
		(b4)	Reserved bit	Set to 1.	R۱
		(b5)	Reserved bit	Set to 0.	RV
L		(b6)	Reserved bit	Set to 1.	RV
		CSPROINI	Count source protect mode after reset select bit	0 : Count source protect mode enabled after reset 1 : Count source protect mode disabled after reset	R\

1. The OFS register is on the flash memory. Write to the OFS register with a program. After writing is completed, do not write additions to the OFS register.

2. If the block including the OFS register is erased, FFh is set to the OFS register.

Figure 20.4 OFS Register

20.4 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area can be rewritten directly while the MCU is mounted on a board without using a ROM programmer. Execute the program and block erase commands only to blocks in the user ROM area.

The flash module has an erase-suspend function when an interrupt request is generated during an erase operation in CPU rewrite mode. It performs an interrupt process after the erase operation is halted temporarily. During erase-suspend, the user ROM area can be read by a program.

In case an interrupt request is generated during an auto-program operation in CPU rewrite mode, the flash module contains a program-suspend function which performs the interrupt process after the auto-program operation is suspended. During program-suspend, the user ROM area can be read by a program.

CPU rewrite mode has an erase write 0 mode (EW0 mode) and an erase write 1 mode (EW1 mode). Table 20.3 lists the Differences between EW0 Mode and EW1 Mode.

Item	EW0 Mode	EW1 Mode
Operating mode	Single-chip mode	Single-chip mode
Areas in which a rewrite control program can be located	User ROM area	User ROM area
Areas in which a rewrite control program can be executed	Necessary to transfer to any area other than the flash memory (e.g., RAM) before executing	Executing directly in user ROM or RAM area possible
Areas which can be rewritten	User ROM area	User ROM area However, blocks which contain a rewrite control program are excluded ⁽¹⁾
Software command restrictions	None	 Program and block erase commands Cannot be run on any block which contains a rewrite control program Read status register command Cannot be executed
Modes after program or erase	Read status register mode	Read array mode
Modes after read status register	Read status register mode	Do not execute this command
CPU status during auto- write and auto-erase	Operating	Hold state (I/O ports hold state before the command is executed)
Flash memory status detection	 Read bits FMR00, FMR06, and FMR07 in the FMR0 register by a program Execute the read status register command and read bits SR7, SR5, and SR4 in the status register. 	Read bits FMR00, FMR06, and FMR07 in the FMR0 register by a program
Conditions for transition to erase-suspend	Set bits FMR40 and FMR41 in the FMR4 register to 1 by a program.	The FMR40 bit in the FMR4 register is set to 1 and the interrupt request of the enabled maskable interrupt is generated
Conditions for transitions to program-suspend	Set bits FMR40 and FMR42 in the FMR4 register to 1 by a program.	The FMR40 bit in the FMR4 register is set to 1 and the interrupt request of the enabled maskable interrupt is generated
CPU clock	5 MHz or below	No restriction (on clock frequency to be used)

Table 20.3 Differences between EW0 Mode and EW1 Mode

NOTE:

1. When the FMR02 bit in the FMR0 register is set to 1 (rewrite enabled), rewriting block 0 is enabled by setting the FMR15 bit in the FMR1 register to 0 (rewrite enabled), and rewriting block 1 is enabled by setting the FMR16 bit to 0 (rewrite enabled).

20.4.1 EW0 Mode

The MCU enters CPU rewrite mode and software commands can be acknowledged by setting the FMR01 bit in the FMR0 register to 1 (CPU rewrite mode enabled). In this case, since the FMR11 bit in the FMR1 register is set to 0, EW0 mode is selected.

Use software commands to control program and erase operations. The FMR0 register or the status register can be used to determine when program and erase operations complete.

During auto-erasure, set the FMR40 bit to 1 (erase-suspend enabled) and the FMR41 bit to 1 (request erase-suspend). Wait for td(SR-SUS) and ensure that the FMR46 bit is set to 1 (read enabled) before accessing the user ROM area. The auto-erase operation can be restarted by setting the FMR41 bit to 0 (erase restarts).

To enter program-suspend during the auto-program operation, set the FMR40 bit to 1 (suspend enabled) and the FMR42 bit to 1 (request program-suspend). Wait for td(SR-SUS) and ensure that the FMR46 bit is set to 1 (read enabled) before accessing the user ROM area. The auto-program operation can be restarted by setting the FMR42 bit to 0 (program restarts).

20.4.2 EW1 Mode

The MCU is switched to EW1 mode by setting the FMR11 bit to 1 (EW1 mode) after setting the FMR01 bit to 1 (CPU rewrite mode enabled).

The FMR0 register can be used to determine when program and erase operations complete. Do not execute commands that use the read status register in EW1 mode.

To enable the erase-suspend function during auto-erasure, execute the block erase command after setting the FMR40 bit to 1 (erase-suspend enabled). The interrupt to enter erase-suspend should be in interrupt enabled status. After waiting for td(SR-SUS) after the block erase command is executed, the interrupt request is acknowledged.

When an interrupt request is generated, the FMR41 bit is automatically set to 1 (requests erase-suspend) and the auto-erase operation suspends. If an auto-erase operation does not complete (FMR00 bit is 0) after an interrupt process completes, the auto-erase operation restarts by setting the FMR41 bit to 0 (erasure restarts)

To enable the program-suspend function during auto-programming, execute the program command after setting the FMR40 bit to 1 (suspend enabled). The interrupt to enter program-suspend should be in interrupt enabled status. After waiting for td(SR-SUS) after the program command is executed, an interrupt request is acknowledged.

When an interrupt request is generated, the FMR42 bit is automatically set to 1 (request program-suspend) and the auto-program operation suspends. When the auto-program operation does not complete (FMR00 bit is 0) after the interrupt process completes, the auto-program operation can be restarted by setting the FMR42 bit to 0 (programming restarts).

Figure 20.5 shows the FMR0 Register. Figure 20.6 shows the FMR1 Register. Figure 20.7 shows the FMR4 Register.

20.4.2.1 FMR00 Bit

This bit indicates the operating status of the flash memory. The bits value is 0 during programming, erasure (including suspend periods), or erase-suspend mode; otherwise, it is 1.

20.4.2.2 FMR01 Bit

The MCU is made ready to accept commands by setting the FMR01 bit to 1 (CPU rewrite mode).

20.4.2.3 FMR02 Bit

Rewriting of blocks 0 and 1 does not accept program or block erase commands if the FMR02 bit is set to 0 (rewrite disabled).

Rewriting of blocks 0 and 1 are controlled by bits FMR15 and FMR16 if the FMR02 bit is set to 1 (rewrite enabled).

20.4.2.4 FMSTP Bit

This bit is used to initialize the flash memory control circuits, and also to reduce the amount of current consumed by the flash memory. Access to the flash memory is disabled by setting the FMSTP bit to 1. Therefore, the FMSTP bit must be written to by a program transferred to the RAM.

In the following cases, set the FMSTP bit to 1:

- When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit not reset to 1 (ready))
- To provide lower consumption in high-speed on-chip oscillator mode and low-speed on-chip oscillator mode (XIN clock stops).

Figure 20.11 shows the handling to provide lower consumption in high-speed on-chip oscillator mode and low-speed on-chip oscillator mode (XIN clock stops). Handle according to this flowchart. Note that when going to stop or wait mode while the CPU rewrite mode is disabled, the FMR0 register does not need to be set because the power for the flash memory is automatically turned off and is turned back on again after returning from stop or wait mode.

20.4.2.5 FMR06 Bit

This is a read-only bit indicating the status of an auto-program operation. The bit is set to 1 when a program error occurs; otherwise, it is cleared to 0. For details, refer to the description in **20.4.5 Full Status Check**.

20.4.2.6 FMR07 Bit

This is a read-only bit indicating the status of an auto-erase operation. The bit is set to 1 when an erase error occurs; otherwise, it is set to 0. Refer to **20.4.5 Full Status Check** for details.

20.4.2.7 FMR11 Bit

Setting this bit to 1 (EW1 mode) places the MCU in EW1 mode.

20.4.2.8 FMR15 Bit

When the FMR02 bit is set to 1 (rewrite enabled) and the FMR15 bit is set to 0 (rewrite enabled), block 0 accepts program and block erase commands.

20.4.2.9 FMR16 Bit

When the FMR02 bit is set to 1 (rewrite enabled) and the FMR16 bit is set to 0 (rewrite enabled), block 1 accepts program and block erase commands.

20.4.2.10 FMR40 Bit

The suspend function is enabled by setting the FMR40 bit to 1 (enable).

20.4.2.11 FMR41 Bit

In EW0 mode, the MCU enters erase-suspend mode when the FMR41 bit is set to 1 by a program. The FMR41 bit is automatically set to 1 (request erase-suspend) when an interrupt request of an enabled interrupt is generated in EW1 mode, and then the MCU enters erase-suspend mode.

Set the FMR41 bit to 0 (erase restarts) when the auto-erase operation restarts.

20.4.2.12 FMR42 Bit

In EW0 mode, the MCU enters program-suspend mode when the FMR42 bit is set to 1 by a program. The FMR42 bit is automatically set to 1 (request program-suspend) when an interrupt request of an enabled interrupt is generated in EW1 mode, and then the MCU enters program-suspend mode. Set the FMR42 bit to 0 (program restart) when the auto-program operation restarts.

20.4.2.13 FMR43 Bit

When the auto-erase operation starts, the FMR43 bit is set to 1 (erase execution in progress). The FMR43 bit remains set to 1 (erase execution in progress) during erase-suspend operation. When the auto-erase operation ends, the FMR43 bit is set to 0 (erase not executed).

20.4.2.14 FMR44 Bit

When the auto-program operation starts, the FMR44 bit is set to 1 (program execution in progress). The FMR44 bit remains set to 1 (program execution in progress) during program-suspend operation. When the auto-program operation ends, the FMR44 bit is set to 0 (program not executed).

20.4.2.15 FMR46 Bit

The FMR46 bit is set to 0 (reading disabled) during auto-program or auto-erase execution and set to 1 (reading enabled) in suspend mode. Do not access the flash memory while this bit is set to 0.

20.4.2.16 FMR47 Bit

Power consumption when reading the flash memory can be reduced by setting the FMR47 bit to 1 (enabled) in low-speed on-chip oscillator mode (XIN clock stops).

Flash Memor	ry Con	trol Registe	r 0		
b7 b6 b5 b4 b3 b	2 b1 b0	Symbol FMR0 Bit Symbol FMR00	Address 01B7h Bit Name RY/BY status flag	After Reset 00000001b Function 0 : Busy (w riting or erasing in progress) 1 : Ready	RW
		FMR01	CPU rew rite mode select bit ⁽¹⁾	0 : CPU rew rite mode disabled 1 : CPU rew rite mode enabled	RW
		FMR02	Blocks 0, 1 rew rite enable bit ^(2, 6)	0 : Disables rew rite 1 : Enables rew rite	RW
		FMSTP	Flash memory stop bit ^(3, 5)	0 : Enables flash memory operation 1 : Stops flash memory (enters low -pow er consumption state and flash memory is reset)	RW
		 (b5-b4)	Reserved bits	Set to 0.	RW
		FMR06	Program status flag ⁽⁴⁾	0 : Completed successfully 1 : Terminated by error	RO
		FMR07	Erase status flag ⁽⁴⁾	0 : Completed successfully 1 : Terminated by error	RO

NOTES:

1. To set this bit to 1, set it to 1 immediately after setting it first to 0. Do not generate an interrupt betw een setting the bit to 0 and setting it to 1. Enter read array mode and set this bit to 0.

- 2. Set this bit to 1 immediately after setting it first to 0 w hile the FMR01 bit is set to 1. Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.
- 3. Set this bit by a program transferred to the RAM.
- 4. This bit is set to 0 by executing the clear status command.

5. This bit is enabled when the FMR01 bit is set to 1 (CPU rew rite mode enabled). When the FMR01 bit is set to 0, writing 1 to the FMSTP bit causes the FMSTP bit to be set to 1. The flash memory does not enter low -pow er consumption state nor is it reset.

6. When setting the FMR01 bit to 0 (CPU rew rite mode disabled), the FMR02 bit is set to 0 (disables rew rite).

Figure 20.5 FMR0 Register

b7 b6 l	b5 b4 b3 b2 b1 b0				
1	000	Symbol	Address	After Reset	
ΤT		FMR1	01B5h	100000Xb	
		Bit Symbol	Bit Name	Function	RW
	╎╎╎╎└└	(b0)	Reserved bit	When read, the content is undefined.	RO
		FMR11	EW1 mode select bit ^(1, 2)	0 : EW0 mode 1 : EW1 mode	RW
		 (b4-b2)	Reserved bits	Set to 0.	RW
		- FMR15	Block 0 rew rite disable bit ^(2,3)	0 : Enables rew rite 1 : Disables rew rite	RW
		FMR16	Block 1 rew rite disable bit ^(2,3)	0 : Enables rew rite 1 : Disables rew rite	RW
		(b7)	Reserved bit	Set to 1.	RW

enable) . Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.

2. This bit is set to 0 by setting the FMR01 bit in the FMR0 register to 0 (CPU rew rite mode disabled).

 When the FMR01 bit is set to 1 (CPU rew rite mode enabled), bits FMR15 and FMR16 can be w ritten to. To set this bit to 0, set it to 0 immediately after setting it first to 1. To set this bit to 1, set it to 1.

Figure 20.6 FMR1 Register

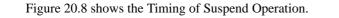
o7 b6 b5 b4 l	o3 b2 b1 b0				
0		Symbol	Address	After Reset	
		FMR4	01B3h	0100000b	
		Bit Symbol	Bit Name	Function	RM
	L	FMR40	Erase-suspend function enable bit ⁽¹⁾	0 : Disable 1 : Enable	RW
		FMR41	Erase-suspend request bit ⁽²⁾	0 : Erase restart 1 : Erase-suspend request	RV
	FMR42	Program-suspend request bit ⁽³⁾	0 : Program restart 1 : Program-suspend request	RV	
		FMR43	Erase command flag	0 : Erase not executed 1 : Erase execution in progress	RC
		FMR44	Program command flag	0 : Program not executed 1 : Program execution in progress	RC
		(b5)	Reserved bit	Set to 0.	RC
		FMR46	Read status flag	0 : Disables reading 1 : Enables reading	RC
		FMR47	Low -pow er consumption read mode enable bit ^(1, 4, 5)	0 : Disable 1 : Enable	RV

1. To set this bit to 1, set it to 1 immediately after setting it first to 0. Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.

2. This bit is enabled when the FMR40 bit is set to 1 (enable) and it can be written to during the period between issuing an erase command and completing the erase. (This bit is set to 0 during periods other than the above.) In EW0 mode, it can be set to 0 or 1 by a program.
In EW1 mode, it is automatically set to 1 if a maskable interrupt is generated during an erase operation while the EMR40 bit is set to 1. Do not set this bit to 1 by a program (0 can be written).

operation while the FMR40 bit is set to 1. Do not set this bit to 1 by a program (0 can be written).

3. The FMR42 bit is enabled only when the FMR40 bit is set to 1 (enable) and programming to the FMR42 bit is enabled until auto-programming ends after a program command is generated. (This bit is set to 0 during periods other than the above.)


In EW0 mode, 0 or 1 can be programmed to the FMR42 bit by a program.

In EW1 mode, the FMR42 bit is automatically set to 1 by generating a maskable interrupt during auto-programming when the FMR40 bit is set to 1.1 cannot be written to the FMR42 bit by a program.

4. In high-speed clock mode and high-speed on-chip oscillator mode, set the FMR47 bit to 0 (disabled).

5. Set the FMR01 bit in the FMR0 register to 0 (CPU rew rite mode disabled) in low -pow er consumption read mode.

Figure 20.7 FMR4 Register

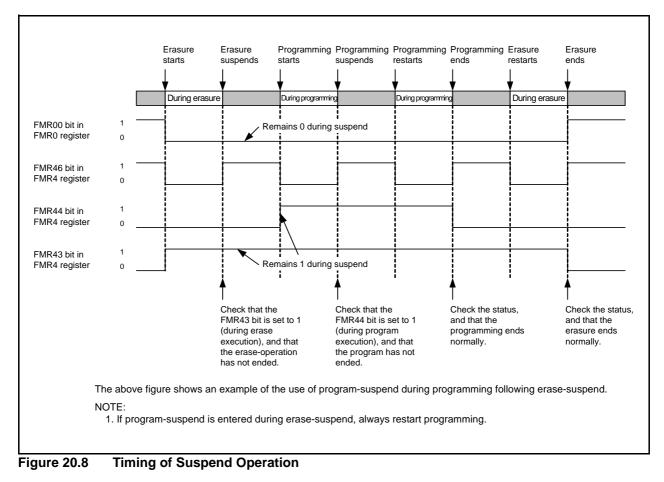


Figure 20.9 shows How to Set and Exit EW0 Mode. Figure 20.10 shows How to Set and Exit EW1 Mode.

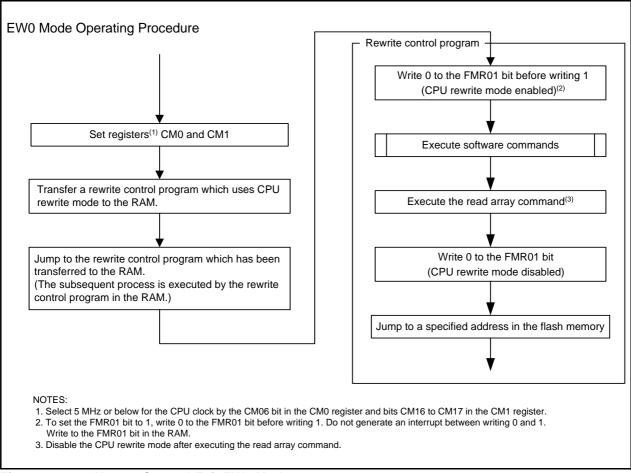
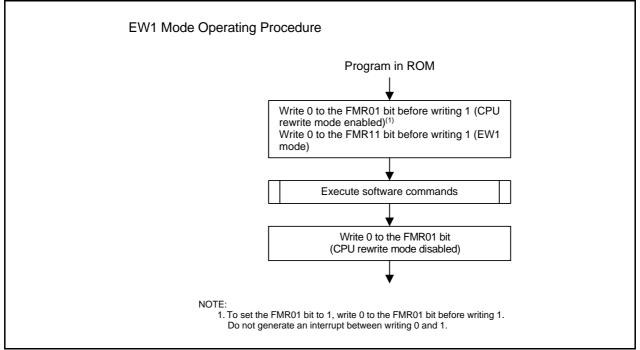
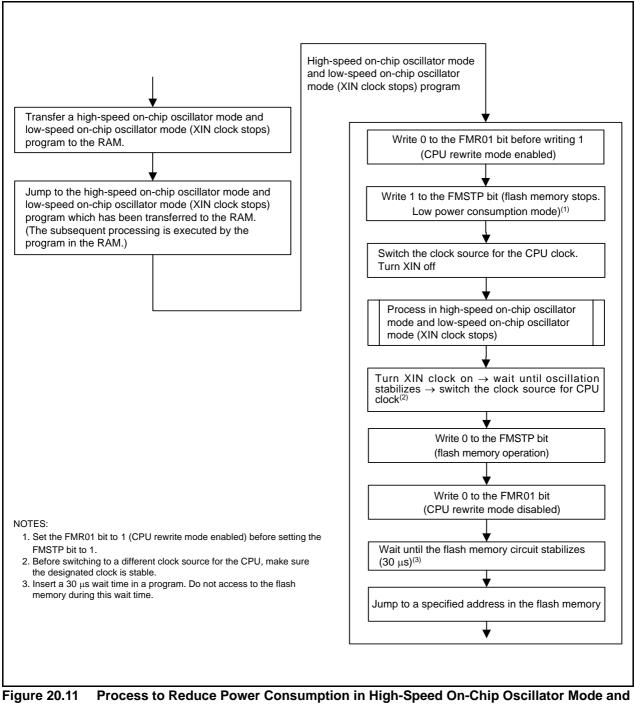




Figure 20.9 How to Set and Exit EW0 Mode

Low-Speed On-Chip Oscillator Mode (XIN Clock Stops)

20.4.3 Software Commands

The software commands are described below. Read or write commands and data in 8-bit units.

		First Bus Cycle			Second Bus Cycle		
Command	Mode	Address	Data (D7 to D0)	Mode	Address	Data (D7 to D0)	
Read array	Write	×	FFh				
Read status register	Write	×	70h	Read	×	SRD	
Clear status register	Write	×	50h				
Program	Write	WA	40h	Write	WA	WD	
Block erase	Write	×	20h	Write	BA	D0h	

Table 20.4 Software Commands

SRD: Status register data (D7 to D0)

WA: Write address (Ensure the address specified in the first bus cycle is the same address as the write address specified in the second bus cycle.)

WD: Write data (8 bits)

BA: Given block address

x: Any specified address in the user ROM area

20.4.3.1 Read Array Command

The read array command reads the flash memory.

The MCU enters read array mode when FFh is written in the first bus cycle. When the read address is entered in the following bus cycles, the content of the specified address can be read in 8-bit units.

Since the MCU remains in read array mode until another command is written, the contents of multiple addresses can be read continuously.

In addition, the MCU enters read array mode after a reset.

20.4.3.2 Read Status Register Command

The read status register command is used to read the status register.

When 70h is written in the first bus cycle, the status register can be read in the second bus cycle (refer to **20.4.4 Status Registers**). When reading the status register, specify an address in the user ROM area.

Do not execute this command in EW1 mode.

The MCU remains in read status register mode until the next read array command is written.

20.4.3.3 Clear Status Register Command

The clear status register command sets the status register to 0.

When 50h is written in the first bus cycle, bits FMR06 to FMR07 in the FMR0 register and SR4 to SR5 in the status register are set to 0.

20.4.3.4 Program Command

The program command writes data to the flash memory in 1-byte units.

By writing 40h in the first bus cycle and data in the second bus cycle to the write address, an auto-program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register can be used to determine whether auto-programming has completed. When suspend function disabled, the FMR00 bit is set to 0 during auto-programming and set to 1 when auto-programming completes.

When suspend function enabled, the FMR44 bit is set to 1 during auto-programming and set to 0 when autoprogramming completes.

The FMR06 bit in the FMR0 register can be used to determine the result of auto-programming after it has been finished (refer to **20.4.5 Full Status Check**).

Do not write additions to the already programmed addresses.

When the FMR02 bit in the FMR0 register is set to 0 (rewriting disabled), or the FMR02 bit is set to 1 (rewrite enabled) and the FMR15 bit in the FMR1 register is set to 1 (rewriting disabled), program commands targeting block 0 are not acknowledged. When the FMR16 bit is set to 1 (rewriting disabled), program commands targeting block 1 are not acknowledged.

Figure 20.12 shows Program Command (When Suspend Function Disabled). Figure 20.13 shows Program Command (When Suspend Function Enabled).

In EW1 mode, do not execute this command for any address which a rewrite control program is allocated.

In EW0 mode, the MCU enters read status register mode at the same time auto-programming starts and the status register can be read. The status register bit 7 (SR7) is set to 0 at the same time auto-programming starts and set back to 1 when auto-programming completes. In this case, the MCU remains in read status register mode until the next read array command is written. The status register can be read to determine the result of auto-programming after auto-programming has completed.

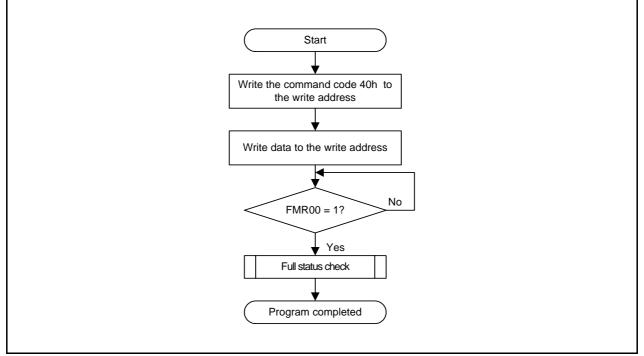


Figure 20.12 Program Command (When Suspend Function Disabled)

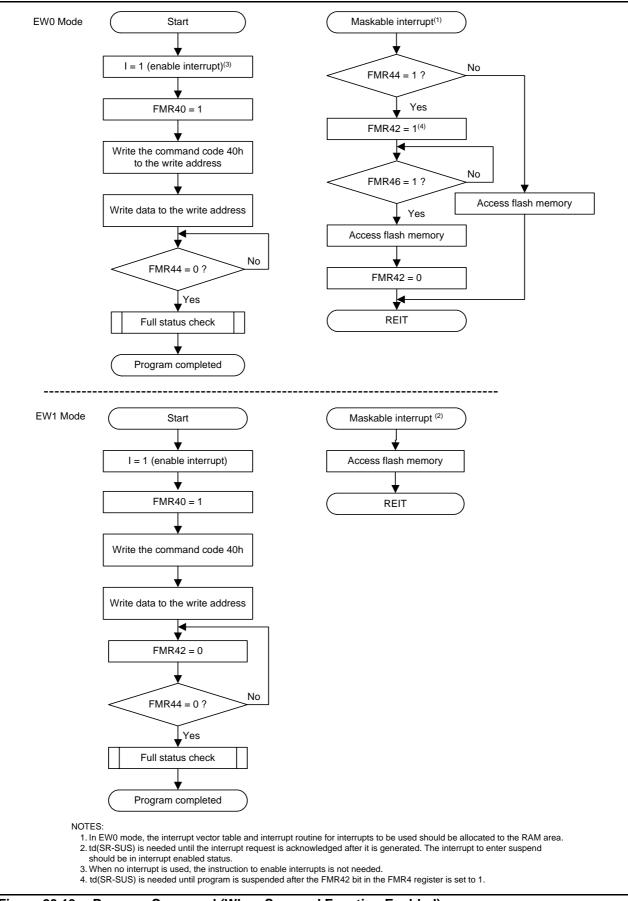


Figure 20.13 Program Command (When Suspend Function Enabled)

20.4.3.5 Block Erase

When 20h is written in the first bus cycle and D0h is written to a given address of a block in the second bus cycle, an auto-erase operation (erase and verify) of the specified block starts.

The FMR00 bit in the FMR0 register can determine whether auto-erasure has completed.

The FMR00 bit is set to 0 during auto-erasure and set to 1 when auto-erasure completes.

The FMR07 bit in the FMR0 register can be used to determine the result of auto-erasure after auto-erasure has completed (refer to **20.4.5 Full Status Check**).

When the FMR02 bit in the FMR0 register is set to 0 (rewriting disabled) or the FMR02 bit is set to 1 (rewriting enabled) and the FMR15 bit in the FMR1 register is set to 1 (rewriting disabled), the block erase commands targeting block 0 are not acknowledged. When the FMR16 bit is set to 1 (rewriting disabled), block erase commands targeting block 1 are not acknowledged.

Do not use the block erase command during program-suspend.

Figure 20.14 shows the Block Erase Command (When Erase-Suspend Function Disabled). Figure 20.15 shows the Block Erase Command (When Erase-Suspend Function Enabled).

In EW1 mode, do not execute this command for any address to which a rewrite control program is allocated.

In EW0 mode, the MCU enters read status register mode at the same time auto-erasure starts and the status register can be read. The status register bit 7 (SR7) is set to 0 at the same time auto-erasure starts and set back to 1 when auto-erasure completes. In this case, the MCU remains in read status register mode until the next read array command is written.

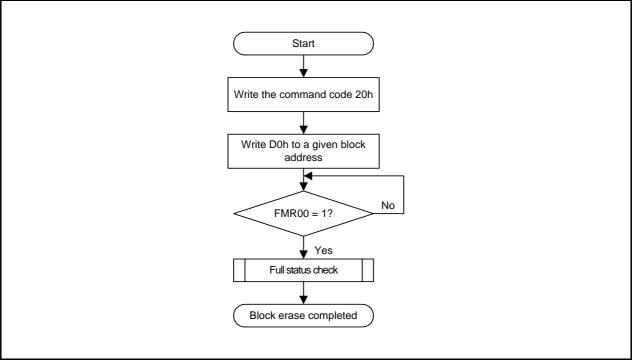


Figure 20.14 Block Erase Command (When Erase-Suspend Function Disabled)

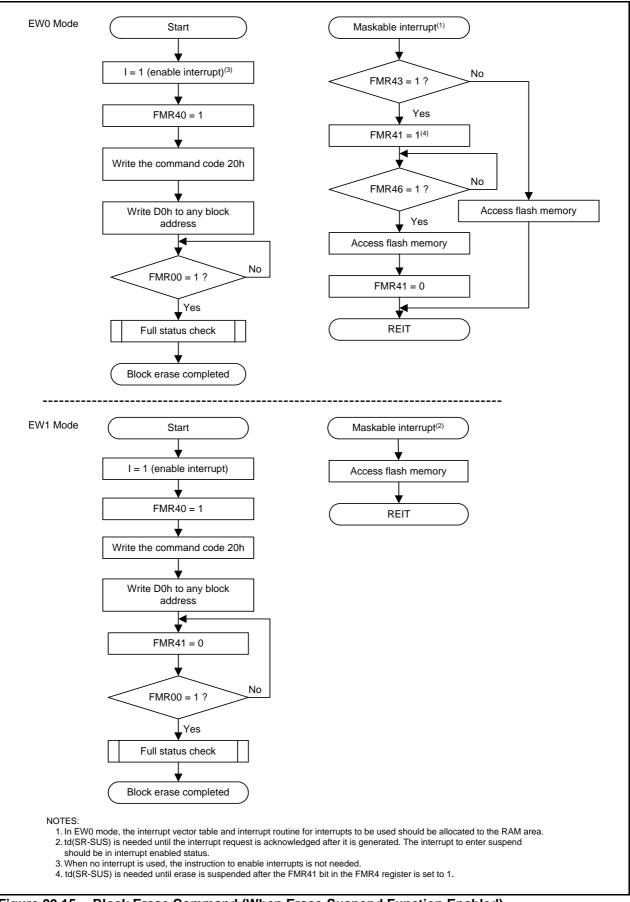


Figure 20.15 Block Erase Command (When Erase-Suspend Function Enabled)

20.4.4 Status Registers

The status register indicates the operating status of the flash memory and whether an erase or program operation has completed normally or in error. Status of the status register can be read by bits FMR00, FMR06, and FMR07 in the FMR0 register.

Table 20.5 lists the Status Register Bits.

In EW0 mode, the status register can be read in the following cases:

- When a given address in the user ROM area is read after writing the read status register command
- When a given address in the user ROM area is read after executing the program or block erase command but before executing the read array command.

20.4.4.1 Sequencer Status (SR7 and FMR00 Bits)

The sequencer status bits indicate the operating status of the flash memory. SR7 is set to 0 (busy) during autoprogramming and auto-erasure, and is set to 1 (ready) at the same time the operation completes.

20.4.4.2 Erase Status (SR5 and FMR07 Bits)

Refer to 20.4.5 Full Status Check.

20.4.4.3 Program Status (SR4 and FMR06 Bits)

Refer to 20.4.5 Full Status Check.

Table 20.5	Status Register Bits
------------	----------------------

Status Register	FMR0 Register	Status Name Description		tion	Value after
Bit	Bit	Status Name	0	1	Reset
SR0 (D0)	-	Reserved	-	-	-
SR1 (D1)	-	Reserved	-	-	-
SR2 (D2)	-	Reserved	-	-	-
SR3 (D3)	-	Reserved	-	-	-
SR4 (D4)	FMR06	Program status	Completed normally	Error	0
SR5 (D5)	FMR07	Erase status	Completed normally	Error	0
SR6 (D6)	-	Reserved	-	-	-
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1

D0 to D7:Indicate the data bus which is read when the read status register command is executed. Bits FMR07 (SR5) to FMR06 (SR4) are set to 0 by executing the clear status register command. When the FMR07 bit (SR5) or FMR06 bit (SR4) is set to 1, the program and block erase commands cannot be accepted.

20.4.5 Full Status Check

When an error occurs, bits FMR06 to FMR07 in the FMR0 register are set to 1, indicating the occurrence of an error. Therefore, checking these status bits (full status check) can be used to determine the execution result. Table 20.6 lists the Errors and FMR0 Register Status. Figure 20.16 shows the Full Status Check and Handling Procedure for Individual Errors.

FRM0 Register (Status			
Register) Status	Error	Error Occurrence Condition
FMR07(SR5)	FMR06(SR4)		
1	1	Command sequence error	 When a command is not written correctly When invalid data other than that which can be written in the second bus cycle of the block erase command is written (i.e., other than D0h or FFh)⁽¹⁾ When the program command or block erase command is executed while rewriting is disabled by the FMR02 bit in the FMR0 register, or the FMR15 or FMR16 bit in the FMR1 register. When an address not allocated in flash memory is input during erase command input When attempting to erase the block for which rewriting is disabled during erase command input. When an address not allocated in flash memory is input during write command input. When attempting to write to a block for which rewriting is disabled during the write command input.
1	0	Erase error	• When the block erase command is executed but auto- erasure does not complete correctly
0	1	Program error	• When the program command is executed but not auto- programming does not complete.

Table 20.6 Errors and FMR0 Register Status

NOTE:

1. The MCU enters read array mode when FFh is written in the second bus cycle of these commands. At the same time, the command code written in the first bus cycle is disabled.

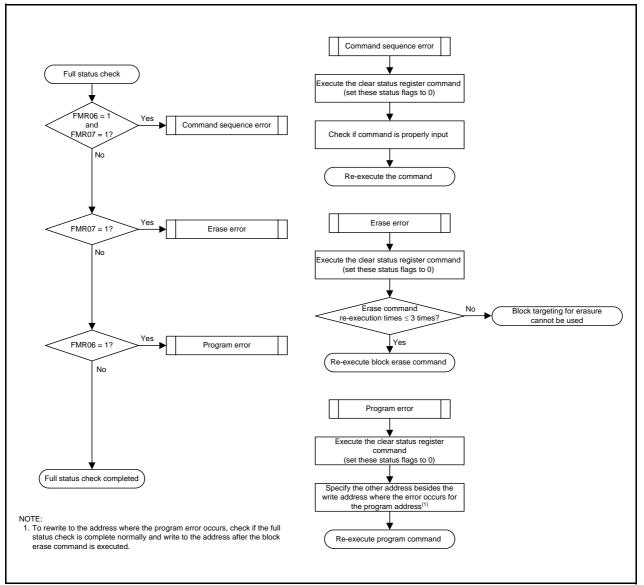


Figure 20.16 Full Status Check and Handling Procedure for Individual Errors

20.5 Standard Serial I/O Mode

In standard serial I/O mode, the user ROM area can be rewritten while the MCU is mounted on-board by using a serial programmer which is suitable for the MCU.

There are three types of Standard serial I/O modes:

- Standard serial I/O mode 1Clock synchronous serial I/O used to connect with a serial programmer
- Standard serial I/O mode 2Clock asynchronous serial I/O used to connect with a serial programmer
- Standard serial I/O mode 3Special clock asynchronous serial I/O used to connect with a serial programmer

This MCU uses Standard serial I/O mode 2 and Standard serial I/O mode 3.

Refer to **Appendix 2. Connection Examples between Serial Writer and On-Chip Debugging Emulator.** Contact the manufacturer of your serial programmer for details. Refer to the user's manual of your serial programmer for instructions on how to use it.

Table 20.7 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 2), Table 20.8 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 3). Figure 20.17 shows Pin Connections for Standard Serial I/O Mode 3. After processing the pins shown in Table 20.8 and rewriting the flash memory using the programmer, apply "H" to the MODE pin and reset the hardware to run a program in the flash memory in single-chip mode.

20.5.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer and those written in the flash memory match (refer to **20.3 Functions to Prevent Rewriting of Flash Memory**).

Pin	Name	I/O	Description
VCC,VSS	Power input		Apply the voltage guaranteed for programming and
			erasure to the VCC pin and 0 V to the VSS pin.
RESET	Reset input	I	Reset input pin.
P4_6/XIN	P4_6 input/clock input	Ι	Connect a ceramic resonator or crystal oscillator
P4_7/XOUT	P4_7 input/clock output	I/O	between the XIN and XOUT pins.
P0_0 to P0_7	Input port P0	I	Input "H" or "L" level signal or leave the pin open.
P1_0 to P1_7	Input port P1	I	
P3_0, P3_1, P3_3 to	Input port P3	I	
P3_6			
P4_2/VREF	Input port P4	I	
P5_3, P5_4	Input port P5	I	
MODE	MODE	I/O	Input "L".
P3_7	TXD output	0	Serial data output pin.
P4_5	RXD input	I	Serial data input pin.

Table 20.7 Pin Functions (Flash Memory Standard Serial I/O Mode 2)

Pin	Name	I/O	Description
VCC,VSS	Power input		Apply the voltage guaranteed for programming and
			erasure to the VCC pin and 0 V to the VSS pin.
RESET	Reset input	I	Reset input pin.
P4_6/XIN	P4_6 input/clock input	I	Connect a ceramic resonator or crystal oscillator
			between the XIN and XOUT pins when connecting
P4_7/XOUT	P4_7 input/clock output	I/O	external oscillator. Apply "H" and "L" or leave the pin
			open when using as input port.
P0_0 to P0_7	Input port P0	I	Input "H" or "L" level signal or leave the pin open.
P1_0 to P1_7	Input port P1	I	
P3_0, P3_1, P3_3 to	Input port P3	Ι	
P3_7			
P4_2/VREF, P4_5	Input port P4	I	
P5_3, P5_4	Input port P5	I	
MODE	MODE	I/O	Serial data I/O pin. Connect to the flash
			programmer.

Table 20.8	Pin Functions (Flash Memory	y Standard Serial I/O Mode 3)
------------	-----------------	--------------	-------------------------------

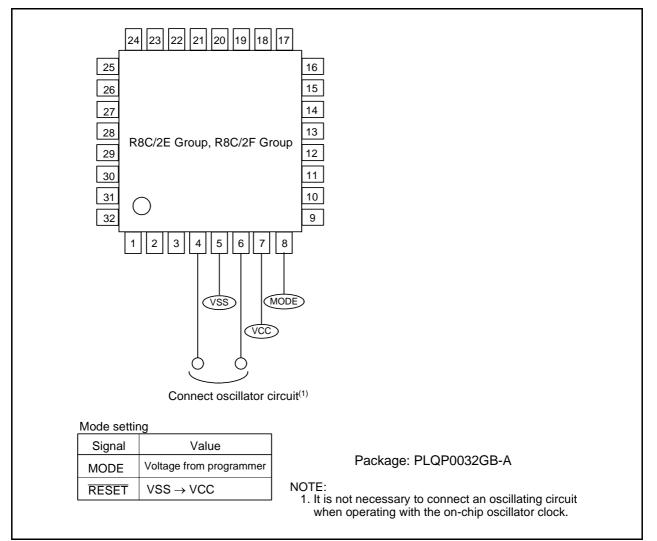


Figure 20.17 Pin Connections for Standard Serial I/O Mode 3

20.5.1.1 Example of Circuit Application in the Standard Serial I/O Mode

Figure 20.18 shows an example of Pin Processing in Standard Serial I/O Mode 2, Figure 20.19 shows an example of Pin Processing in Standard Serial I/O Mode 3. Since the controlled pins vary depending on the programmer, refer to the manual of your serial programmer for details.

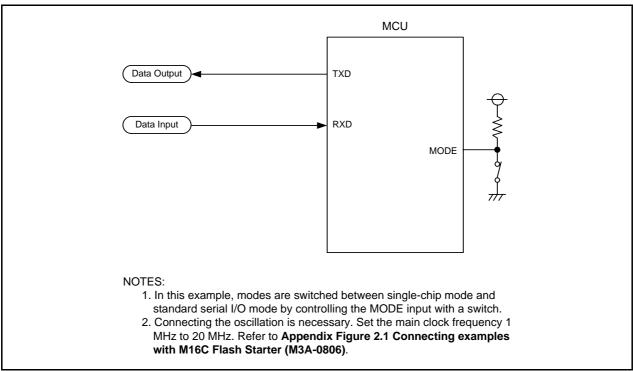


Figure 20.18 Pin Processing in Standard Serial I/O Mode 2

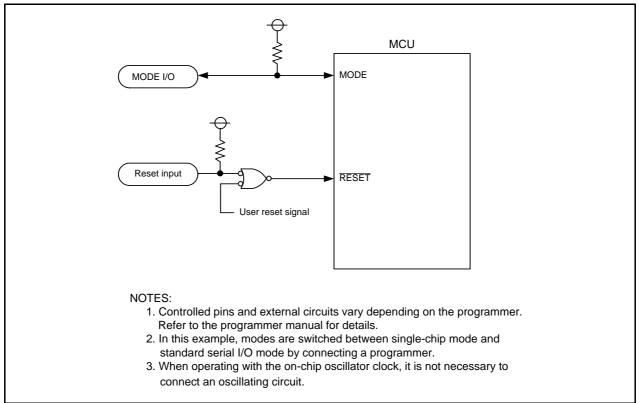


Figure 20.19 Pin Processing in Standard Serial I/O Mode 3

20.6 Parallel I/O Mode

Parallel I/O mode is used to input and output software commands, addresses and data necessary to control (read, program, and erase) the on-chip flash memory. Use a parallel programmer which supports this MCU. Contact the manufacturer of the parallel programmer for more information, and refer to the user's manual of the parallel programmer for details on how to use it.

ROM areas shown in Figures 20.1 and 20.2 can be rewritten in parallel I/O mode.

20.6.1 ROM Code Protect Function

The ROM code protect function disables the reading and rewriting of the flash memory. (Refer to the **20.3 Functions to Prevent Rewriting of Flash Memory**.)

20.7 Notes on Flash Memory Version

20.7.1 CPU Rewrite Mode

20.7.1.1 Operating Speed

Before entering CPU rewrite mode (EW0 mode), select 5 MHz or below for the CPU clock using the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register. This does not apply to EW1 mode.

20.7.1.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because they reference internal data in flash memory: UND, INTO, and BRK.

20.7.1.3 Interrupts

Table 20.9 lists the EW0 Mode Interrupts and Table 20.10 lists the EW1 Mode Interrupt.

Table 20.9EW0 Mode Interrupts

		When Maskable	When Watchdog Timer, Oscillation Stop
Mode	Status	Interrupt Request is	Detection, Voltage Monitor 1, or Voltage Monitor
		Acknowledged	2 Interrupt Request is Acknowledged
EWO	During auto-erasure	Any interrupt can be used by allocating a vector in RAM	Once an interrupt request is acknowledged, the auto-programming or auto-erasure is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after the fixed period and the flash memory restarts. Since the block during auto-erasure or the address during auto-programming is forcibly stopped, the normal value may not be read. Execute auto- erasure again and ensure it completes normally.
			Since the watchdog timer does not stop during the command operation, interrupt requests may
			be generated. Reset the watchdog timer
			regularly.

NOTES:

- 1. Do not use the address match interrupt while a command is being executed because the vector of the address match interrupt is allocated in ROM.
- 2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

Mode	Status	When Maskable Interrupt Request is Acknowledged	When Watchdog Timer, Oscillation Stop Detection, Voltage Monitor 1, or Voltage Monitor 2 Interrupt Request is Acknowledged
EW1	During auto-erasure (erase-suspend function enabled)	Auto-erasure is suspended after td(SR-SUS) and interrupt handling is executed. Auto- erasure can be restarted by setting the FMR41 bit in the FMR4 register to 0 (erase restart) after interrupt handling completes.	Once an interrupt request is acknowledged, auto-programming or auto-erasure is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after the fixed period and the flash memory restarts. Since the block during auto- erasure or the address during auto-
	During auto-erasure (erase-suspend function disabled)	Auto-erasure has priority and the interrupt request acknowledgement is put on standby. Interrupt handling is executed after auto-erasure completes.	programming is forcibly stopped, the normal value may not be read. Execute auto-erasure again and ensure it completes normally. Since the watchdog timer does not stop during the command operation,
	During auto- programming (program suspend function enabled)	Auto-programming is suspended after td(SR-SUS) and interrupt handling is executed. Auto-programming can be restarted by setting the FMR42 bit in the FMR4 register to 0 (program restart) after interrupt handling completes.	interrupt requests may be generated. Reset the watchdog timer regularly using the erase-suspend function.
	During auto- programming (program suspend function disabled)	Auto-programming has priority and the interrupt request acknowledgement is put on standby. Interrupt handling is executed after auto-programming completes.	

NOTES:

- 1. Do not use the address match interrupt while a command is executing because the vector of the address match interrupt is allocated in ROM.
- 2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

20.7.1.4 How to Access

Write 0 before writing 1 when setting the FMR01, FMR02, or FMR11 bit to 1. Do not generate an interrupt between writing 0 and 1.

20.7.1.5 Rewriting User ROM Area

In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

20.7.1.6 Program

Do not write additions to the already programmed address.

20.7.1.7 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

20.7.1.8 Program and Erase Voltage for Flash Memory

To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

21. Electrical Characteristics

Table 21.1	Absolute Maximum Ratings
------------	--------------------------

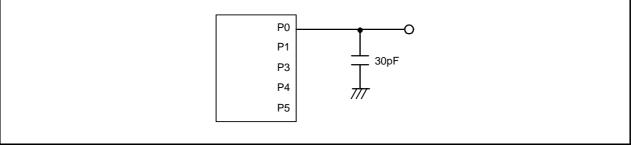

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	Topr = 25°C	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 21.2 **Recommended Operating Conditions**

O maked		D	Operativises		Standard		11.2
Symbol	F	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage			2.7	_	5.5	V
Vss/AVss	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8 Vcc	_	Vcc	V
VIL	Input "L" voltage			0	_	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	_	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	_	-80	mA
IOH(peak)	Peak output "H"	Except P1_0 to P1_7		-	_	-10	mA
	current	P1_0 to P1_7		-	_	-20	mA
IOH(avg)	Average output	Except P1_0 to P1_7		_	-	-5	mA
	"H" current	P1_0 to P1_7		-	-	-10	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "L" currents	Sum of all pins IOL(avg)		-	_	80	mA
IOL(peak)	Peak output "L"	Except P1_0 to P1_7		-	-	10	mA
	currents	P1_0 to P1_7		-	-	20	mA
IOL(avg)	Average output	Except P1_0 to P1_7		-	-	5	mA
	"L" current	P1_0 to P1_7		-	-	10	mA
f(XIN)	XIN clock input osc	illation frequency	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
			$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
-	System clock	OCD2 = 0	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
		XIN clock selected	$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	-	kHz
			$\begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{3.0 V} \le Vcc \le 5.5 \ V \end{array}$	-	_	20	MHz
			$\begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{2.7 V} \le Vcc \le 5.5 \ V \end{array}$	_	-	10	MHz

NOTES:

1. Vcc = 2.7 to 5.5 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. The average output current indicates the average value of current measured during 100 ms.

Figure 21.1	Ports P0, P1,	and P3 to P5	Timing Measur	ement Circuit
-------------	---------------	--------------	----------------------	---------------

Table 21.3	A/D Converter	Characteristics
		•

Symbol		Parameter	Conditions	Standard			Unit
Symbol	ſ	arameter	Conditions	Min.	Тур.	Max.	Unit
-	Resolution		Vref = AVCC	-	-	10	Bits
-	Absolute	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±3	LSB
	accuracy	8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±2	LSB
		10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±5	LSB
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±2	LSB
Rladder	Resistor ladder	·	Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	3.3	-	-	μS
		8-bit mode	ϕ AD = 10 MHz, Vref = AVCC = 5.0 V	2.8	-	-	μS
Vref	Reference voltage	e		2.7	-	AVcc	V
VIA	Analog input volta	age ⁽²⁾		0	-	AVcc	V
-	A/D operating	Without sample and hold	Vref = AVcc = 2.7 to 5.5 V	0.25	-	10	MHz
	clock frequency	With sample and hold	Vref = AVcc = 2.7 to 5.5 V	1	-	10	MHz

NOTES:

1. AVcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 21.4 D/A Converter Characteristics

Symbol	Parameter	Conditions		Standard		Unit
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Unit
—	Resolution		-	-	8	Bit
-	Absolute accuracy		-	-	1.0	%
tsu	Setup time		-	-	3	μS
Ro	Output resistor		4	10	20	kΩ
IVref	Reference power input current	(NOTE 2)	_	-	1.5	mA

NOTES:

1. AVcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

 This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included. Also, even if the VCUT bit in the ADCON1 register is set to 0 (VREF not connected), IVref flows into the D/A converters.

Table 21.5Comparator Characteristics ⁽¹⁾

Symbol	Parameter	Conditions		Standa	rd	Unit
Symbol	Falanielei	Conditions	Min.	Тур.	Max.	Unit
Vcref	Comparator reference voltage		0	-	Vcc-1.2	V
Vcin	Comparator input voltage		-0.3	-	Vcc+0.3	V
Vofs	Input offset voltage		-	-	±100	mV
Tcrsp	Response time		-	-	200	ns

NOTE:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 21.6	Flash Memory (Program ROM) Electrical Characteristics
------------	---

Cumbal	Parameter	Conditions		Standa	ard	Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾	R8C/2E Group	100(3)	-	-	times
		R8C/2F Group	1,000 ⁽³⁾	-	-	times
-	Byte program time		-	50	400	μS
-	Block erase time		-	0.4	9	s
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	_	μS
-	Interval from program start/restart until following suspend request		0	-	_	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.7	-	5.5	V
=	Program, erase temperature		0	—	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	_	year

NOTES:

1. Vcc = 2.7 to 5.5 V at $T_{opr} = 0$ to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Typ. Max.	
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
_	Byte program time (program/erase endurance \leq 1,000 times)		-	50	400	μS
_	Byte program time (program/erase endurance > 1,000 times)		-	65	_	μS
_	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	9	S
_	Block erase time (program/erase endurance > 1,000 times)		-	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	-	_	μS
_	Interval from program start/restart until following suspend request		0	-	_	ns
_	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	_	5.5	V
-	Read voltage		2.7	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	-	year

Table 21.7 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

NOTES:

1. Vcc = 2.7 to 5.5 V at $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. -40°C for D version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

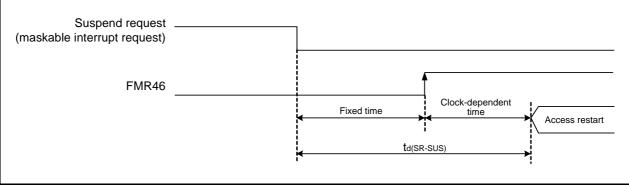


Figure 21.2 Time delay until Suspend

Table 21.8 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Faiameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level ⁽⁴⁾		2.7	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	-	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS
Vccmin	MCU operating voltage minimum value		2.7	-	-	V

NOTES:

1. The measurement condition is Vcc = 2.7 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

 This parameter shows the voltage detection level when the power supply drops. The voltage detection level when the power supply rises is higher than the voltage detection level when the power supply drops by approximately 0.1 V.

Table 21.9 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level	3.3	3.6	3.9	V	
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	_	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.7 V to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Unit		
	Falallielei	Condition	Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽³⁾		-	-	0.1	V
Vpor2	Power-on reset valid voltage		0	-	2.6	V
trth	External power Vcc rise gradient ⁽²⁾		20	_	_	mV/msec

NOTES:

1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.

2. This condition (external power Vcc rise gradient) does not apply if Vcc \ge 1.0 V.

3. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain tw(por1) for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

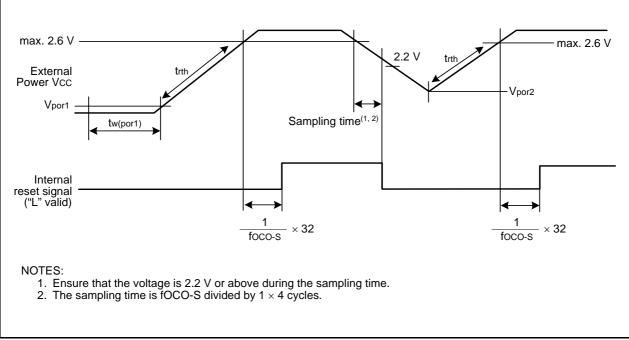


Figure 21.3 Reset Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falameter	Condition	Min.	Тур.	Max.	Onit
fOCO40M	High-speed on-chip oscillator frequency	Vcc = 4.75 V to 5.25 V	39.2	40	40.8	MHz
	temperature • supply voltage dependence	$0^{\circ}C \leq T_{opr} \leq 60^{\circ}C^{(2)}$				
		Vcc = 3.0 V to 5.5 V	38.8	40	41.2	MHz
		$-20^\circ C \leq T_{opr} \leq 85^\circ C^{(2)}$				
		Vcc = 3.0 V to 5.5 V	38.4	40	41.6	MHz
		$-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$				
		Vcc = 2.7 V to 5.5 V	38	40	42	MHz
		$-20^{\circ}C \le T_{opr} \le 85^{\circ}C^{(2)}$				
		Vcc = 2.7 V to 5.5 V	37.6	40	42.4	MHz
		$-40^{\circ}C \le T_{opr} \le 85^{\circ}C^{(2)}$				
		Vcc = 5.0 V ±10%	38.8	40	40.8	MHz
		$-20^{\circ}C \le T_{opr} \le 85^{\circ}C^{(2)}$				
		$Vcc = 5.0 V \pm 10\%$	38.4	40	40.8	MHz
		$-40^{\circ}C \le T_{opr} \le 85^{\circ}C^{(2)}$				
	High-speed on-chip oscillator frequency when	Vcc = 5.0 V, Topr = 25°C	-	36.864	-	MHz
	correction value in FRA7 register is written to	Vcc = 2.7 V to 5.5 V	-3%	-	3%	%
	FRA1 register	$-20^{\circ}C \le T_{opr} \le 85^{\circ}C$				
-	Value in FRA1 register after reset		08h	-	F7h	-
-	Oscillation frequency adjustment unit of high-	Adjust FRA1 register	-	+0.3	-	MHz
ļ	speed on-chip oscillator	(value after reset) to -1				
-	Oscillation stability time		-	10	100	μS
	Self power consumption at oscillation	$VCC = 5.0 V$, $Topr = 25^{\circ}C$	-	400	-	μA

NOTES:

1. Vcc = 2.7 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. These standard values show when the FRA1 register value after reset is assumed.

Table 21.12 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falametei	Condition	Min.	Тур.	Max.	Unit
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
-	Oscillation stability time		-	10	100	μS
-	Self power consumption at oscillation	VCC = 5.0 V , Topr = 25°C	-	15	-	μA

NOTE:

1. Vcc = 2.7 to 5.5 V, $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 21.13 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	-	2000	μS
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μS

NOTES:

1. The measurement condition is Vcc = 2.7 to 5.5 V and $T_{opr} = 25^{\circ}C$.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

Symbol	Parameter		Condition		Standard			Unit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P1_0 to P1_7,	Iон = -5 mA		Vcc - 2.0	-	Vcc	V
		XOUT	Іон = -200 μА		Vcc - 0.5	-	Vcc	V
		P1_0 to P1_7	Drive capacity HIGH	Iон = -10 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	-	Vcc	V
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V
Vol	Output "L" voltage	Except P1_0 to P1_7,	Iol = 5 mA		-	-	2.0	V
		XOUT	IoL = 200 μA		-	-	0.45	V
		P1_0 to P1_7	Drive capacity HIGH	IoL = 10 mA	-	-	2.0	V
			Drive capacity LOW	IoL = 5 mA	-	-	2.0	V
		XOUT	Drive capacity HIGH	IoL = 1 mA	-	-	2.0	V
			Drive capacity LOW	IOL = 500 μA	-	-	2.0	V
Vt+-Vt-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXD0, CLK0			0.1	0.5	-	V
		RESET			0.1	1.0	_	V
Іін	Input "H" current	1	VI = 5 V, Vcc = 5 V		_	_	5.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 5 V		-	-	-5.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 5 V		30	50	167	kΩ
Rfxin	Feedback resistance	XIN			-	1.0	_	MΩ
Vram	RAM hold voltage	•	During stop mode		1.8	-	-	V

Table 21.14 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:

1. Vcc = 4.2 to 5.5 V at $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Table 21.15	Electrical Characteristics (2) [Vcc = 5 V]
	(Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.)

T					Standard	1	
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	10	17	mA
	Single-chip mode, output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	9	15	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	5	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	10	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0 VCA20 = 1	-	25	75	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0 VCA20 = 1	-	23	60	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	_	0.8	3.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	-	1.2	-	μA

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 21.16 XIN Input

Symbol	Parameter		Standard		
	Falameter	Min.	Max.	Unit	
tc(XIN)	XIN input cycle time		=	ns	
twh(xin)	XIN input "H" width		-	ns	
twl(XIN)	XIN input "L" width		-	ns	

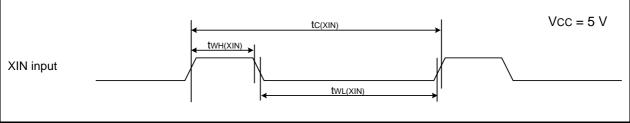


Figure 21.4 XIN Input Timing Diagram when Vcc = 5 V

Table 21.17 TRAIO Input

Symbol	Parameter		Standard	
	Falanielei	Min. Max.		Unit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width		-	ns
twl(traio)	TRAIO input "L" width	40	-	ns

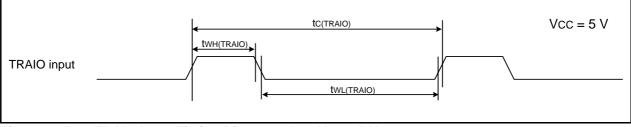
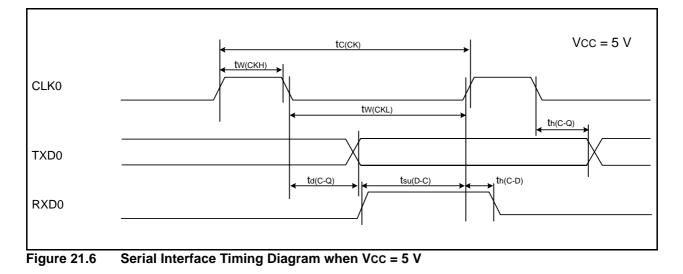



Figure 21.5 TRAIO Input Timing Diagram when Vcc = 5 V

Table 21.18 Ser	ial Interface
-----------------	---------------

Symbol	Parameter		Standard		
			Max.	Unit	
tc(CK)	CLK0 input cycle time	200	-	ns	
tW(CKH)	CLK0 input "H" width	100	-	ns	
tW(CKL)	CLK0 input "L" width	100	-	ns	
td(C-Q)	TXD0 output delay time	-	50	ns	
th(C-Q)	TXD0 hold time	0	-	ns	
tsu(D-C)	RXD0 input setup time	50	-	ns	
th(C-D)	RXD0 input hold time		-	ns	

Table 21.19 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter	Standard		Unit
	Falanielei	Min.	Max.	UTIIL
tw(INH)	INTi input "H" width	250 ⁽¹⁾	-	ns
tw(INL)	INTi input "L" width	250(2)	=	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

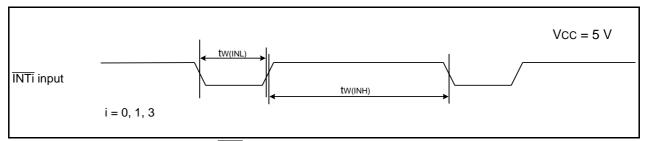
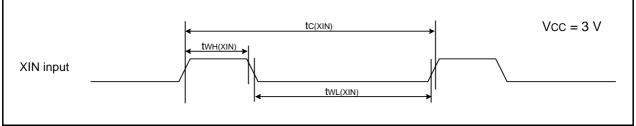


Figure 21.7 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

Symbol	Parameter		Cond	ition	S	tandard		Unit
Symbol			Conu	llion	Min.	Тур.	Max.	
Vон	Output "H" voltage	Except P1_0 to P1_7, XOUT	Iон = -1 mA		Vcc - 0.5	_	Vcc	V
		P1_0 to P1_7	Drive capacity HIGH	Iон = -2 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = –50 μА	Vcc - 0.5	-	Vcc	V
Vol	Output "L" voltage	Except P1_0 to P1_7, XOUT	IOL = 1 mA		-	_	0.5	V
		P1_0 to P1_7	Drive capacity HIGH	Iol = 2 mA	-	-	0.5	V
			Drive capacity LOW	Iol = 1 mA	-	_	0.5	V
		XOUT	Drive capacity HIGH	IoL = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 50 μA	-	—	0.5	V
Vt+-Vt-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, RXD0, CLK0			0.1	0.3	-	V
		RESET			0.1	0.4	-	V
Ін	Input "H" current	1	VI = 3 V, Vcc = 3	V	-	-	4.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 3	V	-	-	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3	V	66	160	500	kΩ
Rfxin	Feedback resistance	XIN			-	3.0	-	MΩ
Vram	RAM hold voltage		During stop mode)	1.8	-	-	V

Table 21.20	Electrical	Characteristics	(3) $[VCC = 3 V]$	
-------------	------------	-----------------	-------------------	--

NOTE: 1. Vcc =2.7 to 3.3 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.


Table 21.21	Electrical Characteristics (4) [Vcc = 3 V]
	(Topr = -20 to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.)

Symbol	Parameter	rameter Condition	Condition	Standard			Unit
Symbol	Falameter		Condition		Тур.	Max.	Offic
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	_	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5	9	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	Max. Uni - mA - mA 9 mA 300 μA 70 μA 55 μA 3.0 μA	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	I	130	300	μΑ
	Wait mode XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0 VCA20 = 1	_	25	70	μΑ		
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0 VCA20 = 1	_	23	55	μΑ
		Stop mode	XIN clock off, $T_{opr} = 25 ^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	-	0.7	3.0	μΑ
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	-	1.1	-	μΑ

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 21.22 XIN Input

Symbol	Parameter	Standard		Unit
	Falanielei		Max.	
tc(XIN)	XIN input cycle time	100	-	ns
twh(xin)	XIN input "H" width		-	ns
twl(XIN)	XIN input "L" width	40	-	ns

Figure 21.8 XIN Input Timing Diagram when Vcc = 3 V

Table 21.23 TRAIO Input

Symbol	Parameter	Standard		Unit
	Falanielei		Max.	
tc(TRAIO)	TRAIO input cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	-	ns

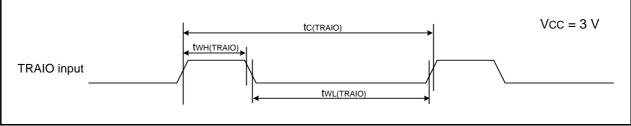
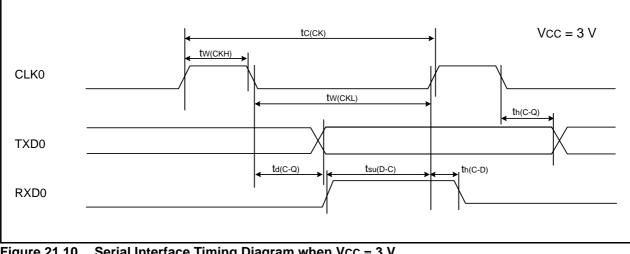
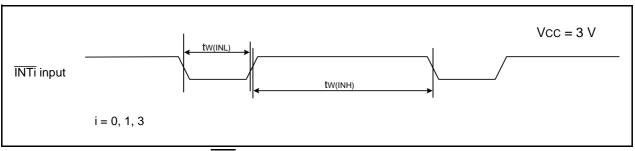



Figure 21.9 TRAIO Input Timing Diagram when Vcc = 3 V

Symbol	Derometer	Standard		Unit
	Parameter		Max.	
tc(CK)	CLK0 input cycle time	300	-	ns
tW(CKH)	CLK0 input "H" width	150	-	ns
tW(CKL)	CLK0 Input "L" width	150	-	ns
td(C-Q)	TXD0 output delay time	-	80	ns
th(C-Q)	TXD0 hold time	0	-	ns
tsu(D-C)	RXD0 input setup time	70	-	ns
th(C-D)	RXD0 input hold time	90	-	ns

Serial Interface Timing Diagram when Vcc = 3 V Figure 21.10


Table 21.25 External Interrupt INTi (i = 0, 1, 3) Input

Symbol	Parameter	Standard		Unit
	Faranielei	Min.	Max.	Onit
tw(INH)	INTi input "H" width	380 ⁽¹⁾	-	ns
tw(INL)	INTi input "L" width	380(2)	I	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

External Interrupt INTi Input Timing Diagram when Vcc = 3 V Figure 21.11

22. Usage Notes

22.1 Notes on Clock Generation Circuit

22.1.1 Stop Mode

When entering stop mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and the CM10 bit in the CM1 register to 1 (stop mode). An instruction queue pre-reads 4 bytes from the instruction which sets the CM10 bit to 1 (stop mode) and the program stops.

Insert at least 4 NOP instructions following the JMP.B instruction after the instruction which sets the CM10 bit to 1.

• Program example to enter stop mode

; CPU rewrite mode disabled 1,FMR0 BCLR BSET 0,PRCR ; Protect disabled ; Enable interrupt FSET Ι BSET 0,CM1 ; Stop mode LABEL_001 JMP.B LABEL 001: NOP NOP NOP NOP

22.1.2 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and execute the WAIT instruction. An instruction queue pre-reads 4 bytes from the WAIT instruction and the program stops. Insert at least 4 NOP instructions after the WAIT instruction.

• Program example to execute the WAIT instruction

BCLR	1,FMR0	; CPU rewrite mode disabled
FSET	Ι	; Enable interrupt
WAIT		; Wait mode
NOP		

22.1.3 Oscillation Stop Detection Function

Since the oscillation stop detection function cannot be used if the XIN clock frequency is 2 MHz or below, set bits OCD1 to OCD0 to 00b.

22.1.4 Oscillation Circuit Constants

Ask the manufacturer of the oscillator to specify the best oscillation circuit constants for your system. To use this MCU with supply voltage below VCC = 2.7 V, it is recommended to set the CM11 bit in the CM1 register to 1 (on-chip feedback resistor disabled), the CM15 bit to 1 (high drive capacity), and connect the feedback resistor to the chip externally.

22.2 Notes on Interrupts

22.2.1 Reading Address 00000h

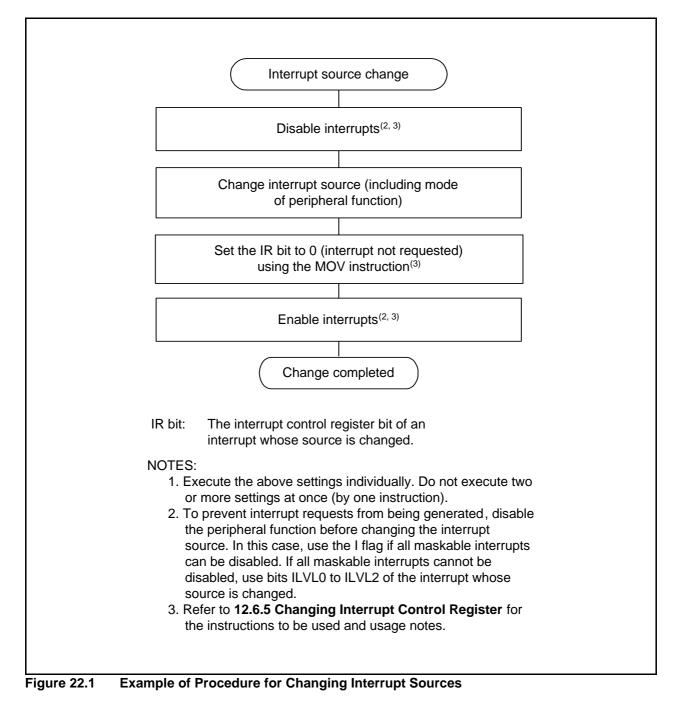
Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the acknowledged interrupt IR bit is set to 0.

If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be generated.

22.2.2 SP Setting

Set any value in the SP before an interrupt is acknowledged. The SP is set to 0000h after reset. Therefore, if an interrupt is acknowledged before setting a value in the SP, the program may run out of control.

22.2.3 External Interrupt and Key Input Interrupt


Either "L" level or an "H" level of width shown in the Electrical Characteristics is necessary for the signal input to pins $\overline{INT0}$, $\overline{INT1}$, $\overline{INT3}$ and pins $\overline{K10}$ to $\overline{K13}$, regardless of the CPU clock. For details, refer to **Table 21.19** (VCC = 5V), **Table 21.25** (VCC = 3V) **External Interrupt** \overline{INTi} (i = 0, 1, 3)

Input.

22.2.4 Changing Interrupt Sources

The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source changes. When using an interrupt, set the IR bit to 0 (no interrupt requested) after changing the interrupt source. In addition, changes of interrupt sources include all factors that change the interrupt sources assigned to individual software interrupt numbers, polarities, and timing. Therefore, if a mode change of a peripheral function involves interrupt sources, edge polarities, and timing, set the IR bit to 0 (no interrupt requested) after the change. Refer to the individual peripheral function for its related interrupts.

Figure 22.1 shows an Example of Procedure for Changing Interrupt Sources.

22.2.5 Changing Interrupt Control Register Contents

- (a) The contents of an interrupt control register can only be changed while no interrupt requests corresponding to that register are generated. If interrupt requests may be generated, disable interrupts before changing the interrupt control register contents.
- (b) When changing the contents of an interrupt control register after disabling interrupts, be careful to choose appropriate instructions.

Changing any bit other than IR bit

If an interrupt request corresponding to a register is generated while executing the instruction, the IR bit may not be set to 1 (interrupt requested), and the interrupt request may be ignored. If this causes a problem, use the following instructions to change the register: AND, OR, BCLR, BSET **Changing IR bit**

If the IR bit is set to 0 (interrupt not requested), it may not be set to 0 depending on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(c) When disabling interrupts using the I flag, set the I flag as shown in the sample programs below. Refer to (b) regarding changing the contents of interrupt control registers by the sample programs.

Sample programs 1 to 3 are for preventing the I flag from being set to 1 (interrupts enabled) before the interrupt control register is changed for reasons of the internal bus or the instruction queue buffer.

Example 1: Use NOP instructions to prevent I flag from being set to 1 before interrupt control register is changed

INT_SWITC	H1:	
FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TRAIC register to 00h
NOP		•
NOP		
FSET	Ι	; Enable interrupts

Example 2: Use dummy read to delay FSET instruction

INT_SWITCH2:

FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TRAIC register to 00h
MOV.W	MEM,R0	; <u>Dummy read</u>
FSET	Ι	; Enable interrupts

Example 3: Use POPC instruction to change I flag

INT_SWITCH3:				
PUSHC	FLG			
FCLR	Ι	; Disable interrupts		
AND.B	#00H,0056H	; Set TRAIC register to 00h		
POPC	FLG	; Enable interrupts		
		-		

22.3 Notes on Timers

22.3.1 Notes on Timer RA

- Timer RA stops counting after a reset. Set the values in the timer RA and timer RA prescalers before the count starts.
- Even if the prescaler and timer RA are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In pulse period measurement mode, bits TEDGF and TUNDF in the TRACR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TRACR register, the TEDGF or TUNDF bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TEDGF or TUNDF bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TEDGF and TUNDF are undefined. Write 0 to bits TEDGF and TUNDF before the count starts.
- The TEDGF bit may be set to 1 by the first timer RA prescaler underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the timer RA prescaler immediately after the count starts, then set the TEDGF bit to 0.
- The TCSTF bit retains 0 (count stops) for 0 to 1 cycle of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer $RA^{(1)}$ other than the TCSTF bit. Timer RA starts counting at the first valid edge of the count source after The TCSTF bit is set to 1 (during count). The TCSTF bit remains 1 for 0 to 1 cycle of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RA counting is stopped when the TCSTF bit is set to 0. During this time, do not access registers associated with timer $RA^{(1)}$ other than the TCSTF bit.

NOTE:

1. Registers associated with timer RA: TRACR, TRAIOC, TRAMR, TRAPRE, and TRA.

- When the TRAPRE register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source clock for each write interval.
- When the TRA register is continuously written during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.

22.3.2 Notes on Timer RB

- Timer RB stops counting after a reset. Set the values in the timer RB and timer RB prescalers before the count starts.
- Even if the prescaler and timer RB is read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- In programmable one-shot generation mode and programmable wait one-shot generation mode, when setting the TSTART bit in the TRBCR register to 0, 0 (stops counting) or setting the TOSSP bit in the TRBOCR register to 1 (stops one-shot), the timer reloads the value of reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode, read the timer count value before the timer stops.
- The TCSTF bit remains 0 (count stops) for 1 to 2 cycles of the count source after setting the TSTART bit to 1 (count starts) while the count is stopped.

During this time, do not access registers associated with timer $RB^{(1)}$ other than the TCSTF bit. Timer RB starts counting at the first valid edge of the count source after the TCSTF bit is set to 1 (during count). The TCSTF bit remains 1 for 1 to 2 cycles of the count source after setting the TSTART bit to 0 (count stops) while the count is in progress. Timer RB counting is stopped when the TCSTF bit is set to 0. During this time, do not access registers associated with timer $RB^{(1)}$ other than the TCSTF bit.

NOTE:

- 1. Registers associated with timer RB: TRBCR, TRBOCR, TRBIOC, TRBMR, TRBPRE, TRBSC, and TRBPR.
- If the TSTOP bit in the TRBCR register is set to 1 during timer operation, timer RB stops immediately.
- If 1 is written to the TOSST or TOSSP bit in the TRBOCR register, the value of the TOSSTF bit changes after one or two cycles of the count source have elapsed. If the TOSSP bit is written to 1 during the period between when the TOSST bit is written to 1 and when the TOSSTF bit is set to 1, the TOSSTF bit may be set to either 0 or 1 depending on the content state. Likewise, if the TOSSTF bit is written to 1 during the period between when the TOSSP bit is written to 1 and when the TOSSTF bit is set to 0, the TOSSTF bit may be set to either 0 or 1.

22.3.2.1 Timer mode

The following workaround should be performed in timer mode.

To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:

- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.

22.3.2.2 Programmable waveform generation mode

The following three workarounds should be performed in programmable waveform generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.
- (2) To change registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), synchronize the TRBO output cycle using a timer RB interrupt, etc. This operation should be preformed only once in the same output cycle. Also, make sure that writing to the TRBPR register does not occur during period A shown in Figures 22.2 and 22.3.

The following shows the detailed workaround examples.

• Workaround example (a):

As shown in Figure 22.2, write to registers TRBSC and TRBPR in the timer RB interrupt routine. These write operations must be completed by the beginning of period A.

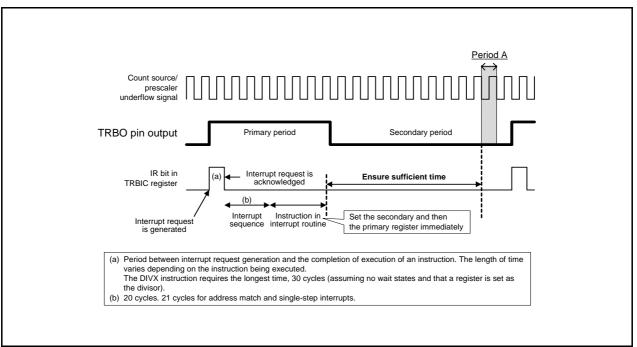


Figure 22.2 Workaround Example (a) When Timer RB interrupt is Used

• Workaround example (b):

As shown in Figure 22.3 detect the start of the primary period by the TRBO pin output level and write to registers TRBSC and TRBPR. These write operations must be completed by the beginning of period A. If the port register's bit value is read after the port direction register's bit corresponding to the TRBO pin is set to 0 (input mode), the read value indicates the TRBO pin output value.

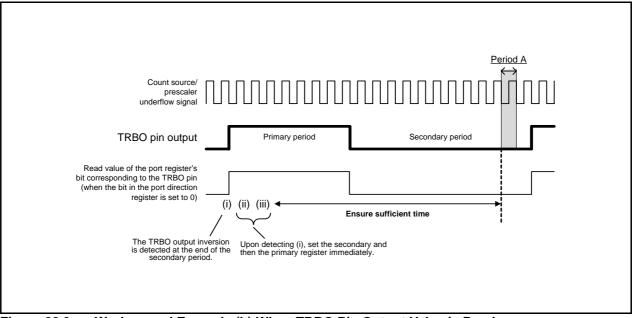


Figure 22.3 Workaround Example (b) When TRBO Pin Output Value is Read

(3) To stop the timer counting in the primary period, use the TSTOP bit in the TRBCR register. In this case, registers TRBPRE and TRBPR are initialized and their values are set to the values after reset.

22.3.2.3 Programmable one-shot generation mode

The following two workarounds should be performed in programmable one-shot generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously during count operation (TCSTF bit is set to 1), allow three or more cycles of the prescaler underflow for each write interval.
- (2) Do not set both the TRBPRE and TRBPR registers to 00h.

22.3.2.4 Programmable wait one-shot generation mode

The following three workarounds should be performed in programmable wait one-shot generation mode.

- (1) To write to registers TRBPRE and TRBPR during count operation (TCSTF bit is set to 1), note the following points:
- When the TRBPRE register is written continuously, allow three or more cycles of the count source for each write interval.
- When the TRBPR register is written continuously, allow three or more cycles of the prescaler underflow for each write interval.
- (2) Do not set both the TRBPRE and TRBPR registers to 00h.
- (3) Set registers TRBSC and TRBPR using the following procedure.
 - (a) To use "INT0 pin one-shot trigger enabled" as the count start condition Set the TRBSC register and then the TRBPR register. At this time, after writing to the TRBPR register, allow an interval of 0.5 or more cycles of the count source before trigger input from the INT0 pin.
 - (b) To use "writing 1 to TOSST bit" as the start condition

Set the TRBSC register, the TRBPR register, and then TOSST bit. At this time, after writing to the TRBPR register, allow an interval of 0.5 or more cycles of the count source before writing to the TOSST bit.

22.3.3 Notes on Timer RC

22.3.3.1 TRC Register

• The following note applies when the CCLR bit in the TRCCR1 register is set to 1 (clear TRC register at compare match with TRCGRA register).

When using a program to write a value to the TRC register while the TSTART bit in the TRCMR register is set to 1 (count starts), ensure that the write does not overlap with the timing with which the TRC register is set to 0000h.

If the timing of the write to the TRC register and the setting of the TRC register to 0000h coincide, the write value will not be written to the TRC register and the TRC register will be set to 0000h.

 Reading from the TRC register immediately after writing to it can result in the value previous to the write being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions. Program Example MOV.W #XXXXh, TRC ;Write

iple	MOV.W	#XXXXh, TRC	;Write
	JMP.B	L1	;JMP.B instruction
L1:	MOV.W	TRC,DATA	;Read

22.3.3.2 TRCSR Register

Reading from the TRCSR register immediately after writing to it can result in the value previous to the write being read out. To prevent this, execute the JMP.B instruction between the read and the write instructions.

Program Example	MOV.B	#XXh, TRCSR	;Write
	JMP.B	L1	;JMP.B instruction
L1:	MOV.B	TRCSR,DATA	;Read

22.3.3.3 Count Source Switching

• Stop the count before switching the count source.

Switching procedure

- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- After switching the count source from fOCO40M to another clock, allow a minimum of two cycles of f1 to elapse after changing the clock setting before stopping fOCO40M.

Switching procedure

- (1) Set the TSTART bit in the TRCMR register to 0 (count stops).
- (2) Change the settings of bits TCK2 to TCK0 in the TRCCR1 register.
- (3) Wait for a minimum of two cycles of f1.
- (4) Set the FRA00 bit in the FRA0 register to 0 (high-speed on-chip oscillator off).

22.3.3.4 Input Capture Function

- The pulse width of the input capture signal should be three cycles or more of the timer RC operation clock (refer to **Table 14.11 Timer RC Operation Clock**).
- The value of the TRC register is transferred to the TRCGRj register one or two cycles of the timer RC operation clock after the input capture signal is input to the TRCIOj (j = A, B, C, or D) pin (when the digital filter function is not used).

22.3.3.5 TRCMR Register in PWM2 Mode

When the CSEL bit in the TRCCR2 register is set to 1 (count stops at compare match with the TRCGRA register), do not set the TRCMR register at compare match timing of registers TRC and TRCGRA.

22.3.4 Notes on Timer RE

22.3.4.1 Starting and Stopping Count

Timer RE has the TSTART bit for instructing the count to start or stop, and the TCSTF bit, which indicates count start or stop. Bits TSTART and TCSTF are in the TRECR1 register.

Timer RE starts counting and the TCSTF bit is set to 1 (count starts) when the TSTART bit is set to 1 (count starts). It takes up to 2 cycles of the count source until the TCSTF bit is set to 1 after setting the TSTART bit to 1. During this time, do not access registers associated with timer $RE^{(1)}$ other than the TCSTF bit.

Also, timer RE stops counting when setting the TSTART bit to 0 (count stops) and the TCSTF bit is set to 0 (count stops). It takes the time for up to 2 cycles of the count source until the TCSTF bit is set to 0 after setting the TSTART bit to 0. During this time, do not access registers associated with timer RE other than the TCSTF bit.

NOTE:

1. Registers associated with timer RE: TRESEC, TREMIN, TRECR1, TRECR2, and TRECSR.

22.3.4.2 Register Setting

Write to the following registers or bits when timer RE is stopped.

- Registers TRESEC, TREMIN, and TRECR2
- INT bit in TRECR1 register
- Bits RCS0 to RCS2 and b3 in TRECSR register

Timer RE is stopped when bits TSTART and TCSTF in the TRECR1 register are set to 0 (timer RE stopped).

Also, set all above-mentioned registers and bits (immediately before timer RE count starts) before setting the TRECR2 register.

22.4 Notes on Serial Interface

• When reading data from the U0RB register either in the clock synchronous serial I/O mode or in the clock asynchronous serial I/O mode, ensure the data is read in 16-bit units. When the high-order byte of the U0RB register is read, bits PER and FER in the U0RB register and the RI bit in the U0C1 register are set to 0. The check receive errors, read the U0RB register and then use the read data.

Example (when reading receive buffer register): MOV.W 00A6H,R0 ; Read the U0RB register

• When writing data to the U0TB register in the clock asynchronous serial I/O mode with 9-bit transfer data length, write data to the high-order byte first then the low-order byte, in 8-bit units.

Example (when reading transmit buffer register):

T (0	e
MOV.B	#XXH,00A3H	; Write the high-order byte of U0TB register
MOV.B	#XXH,00A2H	; Write the low-order byte of U0TB register

22.5 Notes on Hardware LIN

For the time-out processing of the header and response fields, use another timer to measure the duration of time with a Synch Break detection interrupt as the starting point.

22.6 Notes on A/D Converter

- Write to each bit (other than bit 6) in the ADCON0 register, each bit in the ADCON1 register, or the SMP bit in the ADCON2 register when A/D conversion is stopped (before a trigger occurs).
- When the VCUT bit in the ADCON1 register is changed from 0 (VREF not connected) to 1 (VREF connected), wait for at least 1 μ s before starting the A/D conversion.
- After changing the A/D operating mode, select an analog input pin again.
- When using the one-shot mode, ensure that A/D conversion is completed before reading the AD register. The IR bit in the ADIC register or the ADST bit in the ADCON0 register can be used to determine whether A/D conversion is completed.
- When using the repeat mode, select the frequency of the A/D converter operating clock \u03c6AD or more for the CPU clock during A/D conversion.

Do not select the fOCO-F for the ϕ AD.

- If the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program and A/D conversion is forcibly terminated during an A/D conversion operation, the conversion result of the A/D converter will be undefined. If the ADST bit is set to 0 by a program, do not use the value of the AD register.
- Connect 0.1 µF capacitor between the P4_2/VREF pin and AVSS pin.
- Do not enter stop mode during A/D conversion.
- Do not enter wait mode when the CM02 bit in the CM0 register is set to 1 (peripheral function clock stops in wait mode) during A/D conversion.

22.7 Notes on Flash Memory Version

22.7.1 CPU Rewrite Mode

22.7.1.1 Operating Speed

Before entering CPU rewrite mode (EW0 mode), select 5 MHz or below for the CPU clock using the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register. This does not apply to EW1 mode.

22.7.1.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because they reference internal data in flash memory: UND, INTO, and BRK.

22.7.1.3 Interrupts

Table 22.1 lists the EW0 Mode Interrupts and Table 22.2 lists the EW1 Mode Interrupt.

Table 22.1EW0 Mode Interrupts

1		When Maskable	When Watchdog Timer, Oscillation Stop
Mode	Status	Interrupt Request is	Detection, Voltage Monitor 1, or Voltage Monitor
		Acknowledged	2 Interrupt Request is Acknowledged
EW0	During auto-erasure	Any interrupt can be used	Once an interrupt request is acknowledged, the
		by allocating a vector in	auto-programming or auto-erasure is forcibly
		RAM	stopped immediately and the flash memory is
			reset. Interrupt handling starts after the fixed
			period and the flash memory restarts. Since the
			block during auto-erasure or the address during
Auto programming			auto-programming is forcibly stopped, the
	Auto-programming		normal value may not be read. Execute auto-
			erasure again and ensure it completes normally.
			Since the watchdog timer does not stop during
			the command operation, interrupt requests may
			be generated. Reset the watchdog timer
			regularly.

NOTES:

- 1. Do not use the address match interrupt while a command is being executed because the vector of the address match interrupt is allocated in ROM.
- 2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

Mode	Status	When Maskable Interrupt Request is Acknowledged	When Watchdog Timer, Oscillation Stop Detection, Voltage Monitor 1, or Voltage Monitor 2 Interrupt Request is Acknowledged
EW1	During auto-erasure (erase-suspend function enabled)	Auto-erasure is suspended after td(SR-SUS) and interrupt handling is executed. Auto- erasure can be restarted by setting the FMR41 bit in the FMR4 register to 0 (erase restart) after interrupt handling completes.	Once an interrupt request is acknowledged, auto-programming or auto-erasure is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after the fixed period and the flash memory restarts. Since the block during auto- erasure or the address during auto-
	During auto-erasure (erase-suspend function disabled)	Auto-erasure has priority and the interrupt request acknowledgement is put on standby. Interrupt handling is executed after auto-erasure completes.	programming is forcibly stopped, the normal value may not be read. Execute auto-erasure again and ensure it completes normally. Since the watchdog timer does not stop during the command operation,
	During auto- programming (program suspend function enabled)	Auto-programming is suspended after td(SR-SUS) and interrupt handling is executed. Auto-programming can be restarted by setting the FMR42 bit in the FMR4 register to 0 (program restart) after interrupt handling completes.	interrupt requests may be generated. Reset the watchdog timer regularly using the erase-suspend function.
	During auto- programming (program suspend function disabled)	Auto-programming has priority and the interrupt request acknowledgement is put on standby. Interrupt handling is executed after auto-programming completes.	

NOTES:

- 1. Do not use the address match interrupt while a command is executing because the vector of the address match interrupt is allocated in ROM.
- 2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

22.7.1.4 How to Access

Write 0 before writing 1 when setting the FMR01, FMR02, or FMR11 bit to 1. Do not generate an interrupt between writing 0 and 1.

22.7.1.5 Rewriting User ROM Area

In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

22.7.1.6 Program

Do not write additions to the already programmed address.

22.7.1.7 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

22.7.1.8 Program and Erase Voltage for Flash Memory

To perform programming and erasure, use VCC = 2.7 V to 5.5 V as the supply voltage. Do not perform programming and erasure at less than 2.7 V.

22.8 Notes on Noise

22.8.1 Inserting a Bypass Capacitor between VCC and VSS Pins as a Countermeasure against Noise and Latch-up

Connect a bypass capacitor (at least 0.1 μ F) using the shortest and thickest write possible.

22.8.2 Countermeasures against Noise Error of Port Control Registers

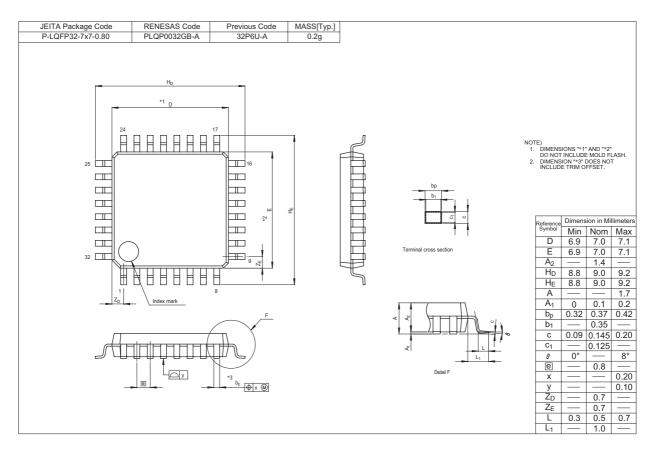
During rigorous noise testing or the like, external noise (mainly power supply system noise) can exceed the capacity of the MCU's internal noise control circuitry. In such cases the contents of the port related registers may be changed.

As a firmware countermeasure, it is recommended that the port registers, port direction registers, and pull-up control registers be reset periodically. However, examine the control processing fully before introducing the reset routine as conflicts may be created between the reset routine and interrupt routines.

23. Notes for On-Chip Debugger

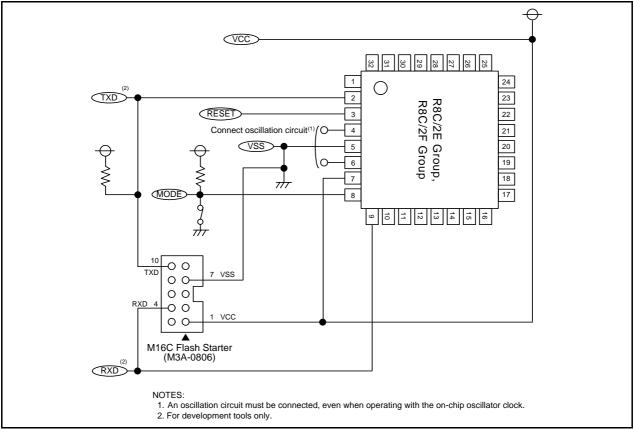
When using the on-chip debugger to develop and debug programs for the R8C/2E Group and R8C/2F Group take note of the following.

(1) Some of the user flash memory and RAM areas are used by the on-ship debugger. These areas cannot be accessed by the user.

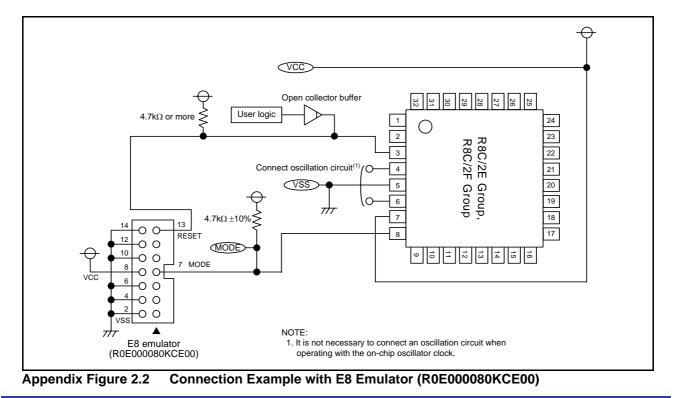

Refer to the on-chip debugger manual for which areas are used.

- (2) Do not set the address match interrupt (registers AIER, RMAD0, and RMAD1 and fixed vector tables) in a user system.
- (3) Do not use the BRK instruction in a user system.
- (4) Debugging is available under the condition of supply voltage VCC = 2.7 to 5.5 V. Debugging with the on-chip debugger under less than 2.7 V is not allowed.

Connecting and using the on-chip debugger has some special restrictions. Refer to the on-chip debugger manual for details.

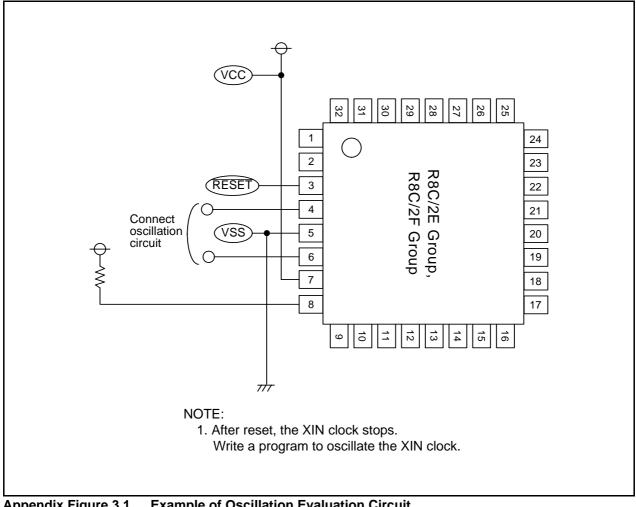

Appendix 1. Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.



Appendix 2. Connection Examples between Serial Writer and On-Chip Debugging Emulator

Appendix Figure 2.1 shows a Connection Example with M16C Flash Starter (M3A-0806) and Appendix Figure 2.2 shows a Connection Example with E8 Emulator (R0E000080KCE00).



Appendix Figure 2.1 Connection Example with M16C Flash Starter (M3A-0806)

Appendix 3. Example of Oscillation Evaluation Circuit

Appendix Figure 3.1 shows an Example of Oscillation Evaluation Circuit.

Appendix Figure 3.1 **Example of Oscillation Evaluation Circuit**

Index

[A]
ACCR0 to ACCR1
AD
ADCON0
ADCON2
ADIC
[C]
CM0
CM1
CM1IC
[D]
DA0 to DA1
DACON
[F]
[F] FMR0
FMR1
FMR4
FRA1
FRA2
[1]
INT0IC
INTTIC
INTEN
INTF
[K]
KIEN 108
KUPIC
[L]
LINCR
LINST
[0] OCD
OFS
[P] P1DRR
PIDRR
Pi (i = 0, 1, and 3 to 5) 49
PINSR2
PM0
PM1
PRCR

PUR1				51
[R]				
RMAD0				110
RMAD1				110
[S]				
SORIC				95
SOTIC				95
[T]				
TRA				124
TRACR				123
TRAIC				95
TRAIOC 123, 125,	128.1	30.	132.	135
TRAMR				
TRAPRE				
TRBCR				139
TRBIC				95
TRBIOC 140,	142. 14	46.	149.	153
TRBMR				
TRBOCR				139
TRBPR				
TRBPRE				141
TRBSC				141
TRC				166
TRCCR1	163, 1	86,	190,	195
TRCCR2				167
TRCDF				
TRCGRA				166
TRCGRB				166
TRCGRC				166
TRCGRD				166
TRCIC				96
TRCIER				164
TRCIOR0				
TRCIOR1	1	70,	180,	185
TRCMR				
TRCOER				
TRCSR				
TRECR1				
TRECR2				
TRECSR				
TREIC				
TREMIN				
TRESEC				203

[\]	
VCA1	
VCA2	
VW1C	
VW2C	

[W]	
WDC 1	16
WDTR 1	16
WDTS 1	16

REVISION HISTORY	R8C/2E Group, R8C/2F Group	Hardware Manual
-------------------------	----------------------------	-----------------

_		Description	
Rev.	Date	Page	Summary
0.01	Nov 17, 2006	_	First Edition issued
0.03a	May 31, 2007	_	"RENESAS TECHNICAL UPDATE" reflected: TN-16C-A164A/E, TN-16C-A167A/E
		25	Figure 5.3 revised
		26	Figure 5.4 NOTE1 revised
		29	5.2 and Figure 5.7 revised
		33	Figure 6.4; VCA2 register NOTE5 revised
		56	Table 7.18 revised
		67	10 revised
		68	Figure 10.1 revised
		72	Figure 10.5 FRA1 register revised
		73	Figure 10.6 NOTE5 revised
		74	Figure 10.7 added
		79	10.4.1.3 revised
		83	10.4.2.5 and Figure 10.10 revised
		85	Figure 10.11 revised
		87	10.5.1 revised
		94	12.1.3.1 revised
		106	12.2.1 revised
		111	Table 12.6 revised
		114	12.6.4 deleted
		115	Figure 12.19 NOTE2 revised
		119	Figure 13.3 OFS register NOTE1 revised
		128	Figure 14.5; "Following conditions" revised
		139	14.1.6 revised
		142	Figure 14.14 TRBMR register revised
		143	Figure 14.15 TRBPR register; NOTE2 revised
		146	Figure 14.17; "Following conditions" revised
		154	Table 14.10 revised
		157 to 160	14.2.5.1 to 14.2.5.4 added
		212	Figure 15.4 U0MR to U1MR Register NOTE2 deleted
		222	Table 15.5 NOTE2 added
		233	Figure 16.6 revised
		234	Figure 16.7; "B0CLR"bit name revised
		236	Figure 16.9 revised
		238	Figure 16.11; "BCDCT" flag name revised.
		255	17.7 revised
		267	Table 20.2 revised

REVISION HISTORY R8C/2E Group, R8C/2F Group Hardware Manual

			Description
Rev. Date		Page	Summary
0.03a	May 31, 2007	271	Figure 20.4 NOTE1 revised
	•	272	Table 20.3 revised
		274	20.4.2.4 revised
		275	20.4.2.15 revised
		276	Figure 20.5 revised
		278	Figure 20.7 NOTE5 revised
		280	Figure 20.9 revised
		281	Figure 20.11 revised
		283	20.4.3.4 revised
		284	Figure 20.13 revised
		286	Figure 20.15 revised
		288	Table 20.6; "FRM00 Register" \rightarrow "FRM0 Register" revised
		303	Table 21.11 revised
		313	22.2.4 deleted
		314	Figure 22.1 NOTE2 revised
		316	22.3.1 revised
		317 to 320	21.3.2.1 to 21.3.2.4 added
		325	22.6 revised
		332	Appendix Figure 2.1 NOTE2 deleted
		333	Appendix Figure 3.1 NOTE1 revised
0.10	Aug 01, 2007	2, 4	Table 1.1 and Table 1.3; "Serial Interface" revised
		3, 5	Table 1.2 and Table 1.4; revised specifications of "Operating Frequency/ Supply Voltage" and "Current consumption"
		6	Table 1.5 and Figure 1.1; "factory programming product" added
		7	Table 1.6 and Figure 1.2; "factory programming product" added
		8	Figure 1.3 "UART or clock synchronous serial I/O (8 bits × 1)" revised
		9	Figure 1.4 revised
		10	Table 1.7 revised
		11	Table 1.8 revised
		15	Figure 3.1 revised
		16	Figure 3.2 revised
		18	Table 4.2; - 0053h "S1TIC register" deleted, - 0054h "S1RIC register" deleted
		19	Table 4.3; - 00A8h "U1MR register" deleted, - 00A9h "U1BRG register" deleted, - 00AAh to 00ABh "U1TB register" deleted, - 00ACh "U1C0 register" deleted, - 00ADh "U1C1 register" deleted, - 00AEh to 00AFh "U1RB register" deleted
		20	Table 4.4; - 00F5h "PINSR1 register" deleted

REVISION HISTORY R8C/2E Group, R8C/2F Group Hardware Manual

D	Data		Description
Rev. Date		Page	Summary
0.10	Aug 01, 2007	29	Figure 5.7 revised
		43	Figure 7.1 P1_0 to P1_3 and P1_4 revised
		44	Figure 7.2 revised
		50	Figure 7.9 PINSR1 register deleted, Figure 7.10 PMR register revised
		52	Table 7.4 revised
		53	Table 7.9 revised
		59	Table 7.30 and Table 7.31 revised, Table 7.32 revised
		60	Table 7.33 revised
		65	Table 10.1 NOTE2 revised
		66	Figure 10.1 revised
		77	10.4.1.3 "low-speed clock mode" \rightarrow "low-speed on-chip oscillator mode" revised
		94	Table 12.2 revised
		95	Figure 12.3 Registers S1TIC and S1RIC deleted
		103	Figure 12.11 revised
		138	14.2 "The reload register and counter are allocated at the same address." deleted
		141	Figure 14.15 "Programmable one-shot generation mode" mode name revised
		203	Figure 14.64 revised
		207 to 223	15. Serial Interface; "UART1" deleted ("UARTi (i = 0 or 1)" → "0" revised)
		207	Figure 15.1 revised
		208	Figure 15.2 revised
		209	Figure 15.3 U1TB register and U1RB register deleted
		210	Figure 15.4 U1BRG register and U1MR register deleted, U0MR register NOTE1 revised
		211	Figure 15.5 U1C0 register deleted
		212	Figure 15.6 U1C1 register deleted, Figure 15.7 PMR register revised
		213	Table 15.1 revised
		214	Table 15.2 and Table 15.3 revised
		215	Figure 15.8 revised
		216	Figure 15.9 and Figure 15.10 revised
		218	Table 15.4 revised
		219	Table 15.5 and Table 15.6 revised
		220	Figure 15.11 revised
		221	Figure 15.12 revised
		222	Figure 15.13 revised
		223	15.3 revised
		224	Figure 16.1 revised

REVISION HISTORY R8C/2E Group, R8C/2F Group Hardware Manual

	Date	Description		
Rev.		Page	Summary	
0.10	Aug 01, 2007	229	Figure 16.5 revised	
		230	Figure 16.6 "Zero to one cycle of" revised	
		233	Figure 16.9 revised	
		236	Figure 16.12 revised	
		294	Table 21.2 revised	
		296	Table 21.5 and Table 21.6 revised	
		297	Table 21.7 revised	
		298	Table 21.8 NOTE4 added	
		299	Table 21.10 and Figure 21.3 revised	
		301	Table 21.14 revised	
		304	Table 21.18 and Figure 21.6 "i (i = 0 or 1)" \rightarrow "0" revised	
		305	Table 21.20 revised	
		308	Table 21.24 and Figure 21.10 "i (i = 0 or 1)" \rightarrow "0" revised	
		320	22.4 "i (i = 0 or 1)" → "0" revised	
		327	23 (1) deleted	
		329	Appendix Figure 2.1 NOTE2 added, Appendix Figure 2.2 revised	
1.00	Dec 14, 2007	All pages	"Under development" deleted	
		2, 4	Table 1.1 and Table 1.3 "Interrupts" revised	
		6, 7	Table 1.5 and Table 1.6 "(D)" deleted	
		15, 16	Figure 3.1 and Figure 3.2 "Expanded area" deleted	
		17	Table 4.1 "002Ch" added	
		29	5.2 "2.5 V" \rightarrow "2.6 V" revised	
		66	Figure 10.1 revised	
		71	Figure 10.6 "FRA7 Register" added	
		74	10.2.2 revised	
		75	10.3.8 added	
		79	Table 10.3 revised	
		94	Table 12.2 revised	
		122	Figure 14.1 "TSTART" \rightarrow "TCSTF" revised	
		170	Figure 14.36 TRCIOR0: b3 revised, NOTE4 added	
		177	14.3.4 and Table 14.16 revised	
		178	Figure 14.42 revised	
		179	Figure 14.43 b3 revised, NOTE3 added	
		184	Figure 14.47 b3 revised	
		233	Figure 16.9 revised	
		250	Figure 17.10 revised	
		294	Table 21.2 IOH(sum) and NOTE2 revised	
		300	Table 21.11 Symbol "fOCO40M": Parameter added	

R8C/2E Group, R8C/2F Group Hardware Manual

Publication Dat	e:		Nov 17, 2006 Dec 14, 2007
•		ales Strategic Planning Div. enesas Technology Corp.	

 $\ensuremath{\mathbb{C}}$ 2007. Renesas Technology Corp., All rights reserved. Printed in Japan

R8C/2E Group, R8C/2F Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan