° SAMANS /| SAMAN16
Altmel

Atmel | SMART ARM-based MCU

DATASHEET

Description

The Atmel® | SMART SAM4N series is a member of a family of Flash
microcontrollers based on the high performance 32-bit ARM® Cortex®-M4 RISC
processor. It operates at a maximum speed of 100 MHz and features up to 1024
Kbytes of Flash and up to 80 Kbytes of SRAM. The peripheral set includes 3
USARTS, 4 UARTSs, 3 TWIs, 1 SPI, as well as 1 PWM timer, 2 three-channel
general-purpose 16-bit timers (with stepper motor and quadrature decoder logic
support), a low-power RTC, a low-power RTT, 256-bit general purpose backup
registers, a 10-bit ADC (up to 12-bit with digital averaging) and a 10-bit DAC with
an internal voltage reference.

The SAMA4N devices have three software-selectable low-power modes: Sleep,
Wait and Backup. In Sleep mode, the processor is stopped while all other
functions can be kept running. In Wait mode, all clocks and functions are stopped
but some peripherals can be configured to wake up the system based on
predefined conditions. In Backup mode, only the RTC, RTT, and wake-up logic
are running.

The Real-time Event Managment allows peripherals to receive, react to and send
events in Active and Sleep modes without processor intervention.

The SAMA4N device is a medium range general purpose microcontroller with the
best ratio in terms of reduced power consumption, processing power and
peripheral set. This enables the SAM4N to sustain a wide range of applications
including industrial automation and M2M (machine-to-machine), energy metering,
consumer and appliance, building and home control.

It operates from 1.62V to 3.6V and is available in 48, 64, and 100-pin QFP, 48 and
64-pin QFN, and 100-ball BGA packages.

The SAMA4N series offers pin-to-pin compatibility with Atmel SAM4S, SAM3S,
SAM3N and SAM7S devices, facilitating easy migration within the portfolio.

The SAM4N series is the ideal migration path from the SAM4S for applications
that require a reduced BOM cost.

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel SHMART

1. Features

e Core
— ARM Cortex-M4 running at up to 100 MHz
— Memory Protection Unit (MPU)
— Thumb®-2 instruction Set
e Pin-to-pin compatible with SAM3N, SAM3S products (48/64/100-pin versions), SAM4S (64/100-pin versions)
and SAMYS legacy products (64-pin version)
e Memories
— Up to 1024 Kbytes embedded Flash
— Up to 80 Kbytes embedded SRAM
— 8 Kbytes ROM with embedded boot loader routines (UART) and IAP routines, single-cycle access at maximum
speed
e System
— Embedded voltage regulator for single supply operation
— Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe operation
— Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure Detection and optional low power
32.768 kHz for RTC or device clock
— High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default frequency for device startup.
In-application trimming access for frequency adjustment
— Slow Clock Internal RC oscillator as permanent low-power mode device clock
— PLL up to 240 MHz for device clock
— Temperature Sensor
— Up to 23 peripheral DMA (PDC) channels
e Low-power Modes
— Sleep, Wait, and Backup modes, down to 0.7 pA in Backup mode with RTC, RTT, and GPBR
e Peripherals
— Up to 3 USARTSs with 1ISO78186, IrDA (only USARTO), RS-485, and SPI Mode
— Up to 4 two-wire UARTs
— Up to 3 Two-wire Interfaces (TWI)
— 1SPI
— 2 Three-channel 16-bit Timer Counter blocks with capture, waveform, compare and PWM mode, Quadrature
Decoder Logic and 2-bit Gray Up/Down for Stepper Motor
— 1 Four-channel 16-bit PWM
— 32-bit low-power Real-time Timer (RTT) and low-power Real-time Clock (RTC) with calendar and alarm features
— 256-bit General Purpose Backup Registers (GPBR)

— Upto 79 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and on-
die Series Resistor Termination. Individually Programmable Open-drain, Pull-up and Pull-down resistor and
Synchronous Output

— Three 32-bit Parallel Input/Output Controllers

e Analog

— One 10-bit ADC up to 510 ksps, with Digital Averaging Function providing Enhanced Resolution Mode up to 12-
bit, up to 16-channels

— One 10-bit DAC up to 1 msps

— Internal voltage reference, 3V typ

2 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11

e Packages

— 100-lead LQFP — 14 x 14 mm, pitch 0.5 mm
— 100-ball TFBGA — 9 x 9 mm, pitch 0.8 mm
— 100-ball VFBGA — 7 x 7 mm, pitch 0.65 mm
— 64-lead LQFP — 10 x 10 mm, pitch 0.5 mm
— 64-pad QFN — 9 x 9 mm, pitch 0.5 mm

— 48-lead LQFP — 7 x7 mm, pitch 0.5 mm

— 48-pad QFN — 7 x 7 mm, pitch 0.5 mm

Configuration Summary

The SAMA4N series devices differ in memory size, package and features. Table 1-1 summarizes the configurations

of the device family.

Table 1-1. Configuration Summary
Feature SAM4AN16C SAM4N16B SAMANSC SAM4NSB SAMANSA
Flash 1024 Kbytes 1024 Kbytes 512 Kbytes 512 Kbytes 512 Kbytes
SRAM 80 Kbytes 80 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes
Package | Tracawo | OB g | QFPes oreas
VFBGA100 VFBGA100
Number of PIOs 79 47 79 47 34
10-bit ADC 17ch® 11ch @ 17¢ch® 11ch® 9ch®
10-bit DAC 1ch 1lch 1ch 1ch -
16-bit Timer 6 6@ 6 6@ 6©)
PDC Channels 23 23 23 23 23
USART/UART 3/4 2/4 3/4 2/4 1/4
SP| 43 3@ 43 3@ 20)
TWI 3 3 3 3 3
PWM 7(4) 44 7(4) 44 44
Notes: 1. Includes Temperature Sensor
2. Only 3 channels output
3. USARTs with SPI mode are taken into account.
4. Timer Counter in PWM mode is taken into account
5. Only 2 channels output
SAMANS/SAMAN16 [DATASHEET] 3

Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

GT-IBIN-€Z 199USeIRa-9TNYINVS-8NYINYS-INYV1Y-8STTT-[BuWiY

14

[L33HSVLVvA] 9TNYINVYS/SNYINYS

oWy

2. Block Diagram

See Table 1-1 for detailed configurations of memory size, package and features of the SAM4N devices.

Figure 2-1.

TST —»

XIN —p|
XOUT 4—>]

PCK[2:0] 4+—»]

WKUP[15:0] +—»

XIN32 4—p
XOUT32 4+—b

ERASE «—»

RTCOUTO +—»

VDDPLL —b|

VDDIO —P|
VDDCORE —,

NRST «

System Controller

SAMA4N 100-pin Version Block Diagram

&
S &
L

In-Circuit Emulator Flash

Unique ID
Cortex-M4 Processor

ROM SRAM Flash
fMA>< 100 MHz 8 Kbytes 80 Kbytes 1024 Kbytes
64 Kbytes 512 Kbytes

24-bit SysTick Counter
S S S

3-layer Bus Matrix
fyax 100 MHz

<Dl=

Peripheral Bridge

[PDC |

3. Signals Description

Table 3-1 gives details on signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference | Comments
Power Supplies
VDDIO Peripherals I/0 Lines Power Supply Power 1.62V to 3.6V
VDDIN \Slzgzﬁle Regulator, ADC and DAC Power Power 16V 10 3.6V
VDDOUT Voltage Regulator Output Power 1.2V Output
VDDPLL Oscillator Power Supply Power 1.08V to 1.32V
1.08V to 1.32V
VDDCORE Core Chip Power Supply Power Connected externally to
VDDOUT
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input VDDIO
XOuT Main Oscillator Output Output
XIN32 Slow Clock Oscillator Input Input VDDIO
X0OUT32 Slow Clock Oscillator Output Output
PCKO-PCK2 Programmable Clock Output Output
ICE and JTAG
TCK Test Clock Input VDDIO No pull-up resistor
TDI Test Data In Input VDDIO No pull-up resistor
TDO Test Data Out Output VDDIO
TRACESWO Trace Asynchronous Data Out Output VDDIO
SWDIO Serial Wire Input/Output 110 VDDIO
SWCLK Serial Wire Clock Input VDDIO
T™MS Test Mode Select Input VDDIO No pull-up resistor
JTAGSEL JTAG Selection Input High VDDIO Pull-down resistor
Flash Memory
ERASE Fash and NVM Configuration BIs Erase | nput | High | vDDIO | Pull-down (15 Q) resistor
Reset/Test
NRST Microcontroller Reset /0 Low VDDIO Pull-up resistor
TST Test Mode Select Input VDDIO Pull-down resistor
Universal Asynchronous Receiver Transmitter - UARTX
URXDx UART Receive Data Input
UTXDx UART Transmit Data Output

SAMANS/SAMAN16 [DATASHEET 5
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference | Comments
PI1O Controller - PIOA - PIOB - PIOC
PAO-PA31 Parallel 10 Controller A 1/0 VDDIO Pulled-up input at reset
PBO-PB14 Parallel 10 Controller B I/O VDDIO Pulled-up input at reset
PC0O-PC31 Parallel 10 Controller C 1/0 VDDIO Pulled-up input at reset
Universal Synchronous Asynchronous Receiver Transmitter USARTX
SCKXx USARTX Serial Clock 110
TXDx USARTX Transmit Data 110
RXDx USARTX Receive Data Input
RTSx USARTx Request To Send Output
CTSx USARTX Clear To Send Input
Timer Counter - TCx

TCLKX TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A I/0
TIOBXx TC Channel x I/0O Line B I/O

Pulse Width Modulation Controller - PWMC
PWM PWM Waveform Output for channel ‘ Output ’ ‘

Serial Peripheral Interface - SPI
MISO Master In Slave Out 10
MOSI Master Out Slave In IO
SPCK SPI Serial Clock I/1O
NPCSO SPI Peripheral Chip Select 0 110 Low
NPCS1-NPCS3 SPI Peripheral Chip Select Output Low
Two-wire Interface - TWIx
TWDx TWIx Two-wire Serial Data I/0
TWCKX TWIx Two-wire Serial Clock I/0
Analog
ADVREFP® ADC and DAC Reference ‘ Analog ’ ‘
10-bit Analog-to-Digital Converter - ADC
ADO-AD15 Analog Inputs Analog
ADTRG ADC Trigger Input
Digital-to-Analog Converter - DAC

DACO DAC Channel Analog Output Analog
DACTRG DAC Trigger Input
6 SAMANS/SAMAN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

Table 3-1. Signal Description List (Continued)

Active Voltage

Signal Name Function Type Level Reference | Comments
Fast Flash Programming Interface - FFPI

PGMENO-PGMEN2 | Programming Enabling Input VDDIO
PGMMO-PGMM3 Programming Mode Input VDDIO
PGMDO-PGMD15 Programming Data I/0 VDDIO
PGMRDY Programming Ready Output High VDDIO
PGMNVALID Data Direction Output Low VDDIO
PGMNOE Programming Read Input Low VDDIO
PGMCK Programming Clock Input VDDIO
PGMNCMD Programming Command Input Low VDDIO

Note: 1. “ADVREFP” is named “ADVREF” in Section 17. “Supply Controller (SUPC)” and in Section 34. “Analog-to-Digital Converter
(ADC)".

SAMANS/SAMAN16 [DATASHEET 7
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

4. Package and Pinout
SAMA4N devices are pin-to-pin compatible with SAM3N4.

Table 4-1. SAMA4N Packages
Device 100 Pins/Balls 64 Pins/Balls 48 Pins/Balls
SAM4N16 LQFP, TFBGA and VFBGA LQFP and QFN -
SAM4NS LQFP, TFBGA and VFBGA LQFP and QFN LQFP and QFN

4.1 Overview of the 100-lead LQFP Package

Figure 4-1. Orientation of the 100-lead LQFP Package

75 51

1 1
76 — 50

100 o
26
\ —
1] 1
1 25

Refer to Section 37. “SAM4N Mechanical Characteristics” for mechanical drawings and specifications.

4.2 Overview of the 100-ball TFBGA Package
The 100-ball TFBGA package respects the Green Standards.

Figure 4-2. Orientation of the 100-ball TFBGA Package

TOP VIEW

=
o

PN WA 0O N ©

O 0O 000 00 0 0 o0
O 0 0O 00O 00 0 0O
O 0O 0O 00 00 00 o0
O 0 0 00 00 0 0 o
O 0 0 00 00 0 0 o
o 0 0 0O 0O 000 0o
O 0 0 OO0 00 0 0o o
O o0 o 00 0 0o 0 0 o
O 0 0o 00 0 0 0 0 o
o 0 0o 00 00 0 0 o0

_/ A
BALLA1

w
O
O
m
m
@
T
(&
~

Refer to Section 37. “SAM4N Mechanical Characteristics” for mechanical drawings and specifications.

8 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

4.3 Overview of the 100-ball VFBGA Package (7 x 7 x 1 mm - 0.65 mm ball pitch)
The 100-ball VFBGA package respects the Green Standards.

Figure 4-3. Orientation of the 100-ball VFBGA Package
Top View

Al CORNER
1 2

W
o~
Ul
[N
~l
[69]
No)
=

A I o1 mMmg O w >
OO0 0000000 O0
OO0 0000000 O0
OO0 0000000 O0
OO0 000000 O0O0
OO0 000000 O0O0
OO0 0000000 O0
OO0 0000000 O0
OO0 0000000 O0
OO0 000000 O0O0
OO0 0000000 O0
AC I o1 mMmg O w >

H
Mo
W
o~
Ul
N
~l
0
NO)
=

Refer to Section 37. “SAM4N Mechanical Characteristics” for mechanical drawings and specifications.

SAMANS/SAMAN16 [DATASHEET 9
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

4.4 100-lead LQFP, TFBGA and VFBGA Pinout

Table 4-2. SAM4N8/16 100-lead LQFP Pinout

1 ADVREFP 26 GND 51 TDI/PB4 76 | TDO/TRACESWO/PB5
2 GND 27 VDDIO 52 PA6/PGMNOE 77 JTAGSEL

3 PBO/AD4 28 PA16/PGMD4 53 PA5/PGMRDY 78 PC18

4 PC29/AD13 29 PC7 54 PC28 79 TMS/SWDIO/PB6
5 PB1/AD5 30 PA15/PGMD3 55 PA4/PGMNCMD 80 PC19

6 PC30/AD14 31 PA14/PGMD2 56 VDDCORE 81 PA31

7 PB2/AD6 32 PC6 57 PA27 82 PC20

8 PC31/AD15 33 PA13/PGMD1 58 PC8 83 TCK/SWCLK/PB7
9 PB3/AD7 34 PA24 59 PA28 84 PC21

10 VDDIN 35 PC5 60 NRST 85 VDDCORE

11 VDDOUT 36 VDDCORE 61 TST 86 pPC22

12 PA17/PGMD5/AD0O 37 PC4 62 PC9 87 ERASE/PB12
13 PC26 38 PA25 63 PA29 88 PB10

14 PA18/PGMD6/AD1 39 PA26 64 PA30 89 PB11

15 PA21/AD8 40 PC3 65 PC10 90 PC23

16 VDDCORE 41 PA12/PGMDO 66 PA3 91 VDDIO

17 PC27 42 PA11/PGMM3 67 PA2/PGMEN2 92 PC24

18 PA19/PGMD7/AD2 43 PC2 68 PC11 93 PB13/DACO

19 PC15/AD11 44 PA10/PGMM2 69 VDDIO 94 PC25

20 PA22/AD9 45 GND 70 GND 95 GND

21 PC13/AD10 46 PA9/PGMM1 71 PC14 96 PB8/XOUT

22 PA23 a7 PC1 72 PA1/PGMEN1 97 PB9/PGMCK/XIN
23 PC12/AD12 48 | PA8/XOUT32/PGMMO 73 PC16 98 VDDIO

24 PA20/AD3 49 | PA7/XIN32/PGMNVALID 74 PAO/PGMENO 99 PB14

25 PCO 50 VDDIO 75 PC17 100 VDDPLL

10 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 4-3. SAM4N8/16 100-ball TFBGA Pinout

Al PB1/AD5 C6 TCK/SWCLK/PB7 F1 PA18/PGMD6/AD1 H6 PC4

A2 PC29/AD13 c7 PC16 F2 PC26 H7 PA11/PGMM3
A3 VDDIO Cc8 PA1/PGMEN1 F3 VDDOUT H8 PC1

A4 PB9/PGMCK/XIN C9 PC17 F4 GND H9 PA6/PGMNOE
A5 PB8/XOUT C10 PAO/PGMENO F5 VDDIO H10 TDI/PB4
A6 PB13/DACO D1 PB3/AD7 F6 PA27 J1 PC15/AD11
A7 PB11 D2 PBO/AD4 F7 PC8 J2 PCO

A8 PB10 D3 PC24 F8 PA28 J3 PA16/PGMD4
A9 TMS/SWDIO/PB6 D4 PC22 F9 TST J4 PC6
A10 JTAGSEL D5 GND F10 PC9 J5 PA24

Bl PC30 D6 GND Gl PA21/AD8 J6 PA25

B2 ADVREFP D7 VDDCORE G2 PC27 J7 PA10/PGMM2
B3 GND D8 PA2/PGMEN2 G3 PA15/PGMD3 J8 GND

B4 PB14 D9 PC11 G4 VDDCORE J9 VDDCORE
B5 PC21 D10 PC14 G5 VDDCORE J10 VDDIO
B6 PC20 El PA17'/APD%MD5/ G6 PA26 K1 PA22/AD9
B7 PA31 E2 PC31 G7 PA12/PGMDO K2 PC13/AD10
B8 PC19 E3 VDDIN G8 PC28 K3 PC12/AD12
B9 PC18 E4 GND G9 PA4/PGMNCMD K4 PA20/AD3
B10 TDO/T%@%ESWO/ E5 GND G10 PA5/PGMRDY K5 PC5

C1 PB2/AD6 E6 NRST H1 PAlgngc;M b7l K6 PC3

C2 VDDPLL E7 PA29 H2 PA23 K7 PC2

C3 PC25 E8 PA30/AD14 H3 PC7 K8 PA9/PGMM1

PA8/XOUT32/
C4 PC23 E9 PC10 H4 PA14/PGMD2 K9 PGMMO
PA7/XIN32/

C5 ERASE/PB12 E10 PA3 H5 PA13/PGMD1 K10 PGMNVALID

SAMANS/SAMAN16 [DATASHEET 11
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 4-4. SAM4N8/16 100-ball VFBGA Pinout

Al ADVREFP C6 PC9 F1 VDDOUT H6 PA12/PGMDO
A2 VDDPLL Cc7 TMS/SWDIO/PB6 F2 PA18/PGMD6/AD1 H7 PA9/PGMM1
A3 PB9/PGMCK/XIN Cc8 PA1/PGMEN1 F3 PA17/PGMD5/AD0O H8 VDDCORE
A4 PB8/XOUT C9 PAO/PGMENO F4 GND H9 PA6/PGMNOE
A5 JTAGSEL C10 PC16 F5 GND H10 PA5/PGMRDY
A6 PB11 D1 PB1/AD5 F6 PC26 J1 PA20/AD3
A7 PB10 D2 PC30 F7 PA4/PGMNCMD J2 PC12/AD12
A8 PC20 D3 PC31 F8 PA28 J3 PA16/PGMD4
A9 PC19 D4 PC22 F9 TST J4 PC6
A10 TDO/TITDABC;ESWO/ D5 PC5 F10 PC8 J5 PA24

Bl GND D6 PA29 Gl PC15/AD11 J6 PA25

B2 PC25 D7 PA30/AD14 G2 PA19/PGMD7/AD2 J7 PA11/PGMM3
B3 PB14 D8 GND G3 PA21/PGMD9/AD8 J8 VDDCORE
B4 PB13/DACO D9 PC14 G4 PA15/PGMD3 J9 VDDCORE
B5 PC23 D10 PC11 G5 PC3 J10 TDI/PB4
B6 PC21 El VDDIN G6 PA10/PGMM2 K1 PA23

B7 TCK/SWCLK/PB7 E2 PB3/AD7 G7 PC1 K2 PCO

B8 PA31 E3 PB2/AD6 G8 PC28 K3 PC7

B9 PC18 E4 GND G9 NRST K4 PA13/PGMD1
B10 PC17 E5 GND G10 PA27 K5 PA26

C1 PBO/AD4 E6 GND H1 PC13/AD10 K6 PC2

c2 PC29/AD13 E7 VDDIO H2 PA22/AD9 K7 VDDIO

C3 PC24 E8 PC10 H3 pPC27 K8 VDDIO

C4 ERASE/PB12 E9 PA2/PGMEN2 H4 PA14/PGMD2 K9 PABIXOUTS2/

PGMMO

C5 VDDCORE E10 PA3 H5 PC4 K10 PPC':‘I\7/I/I21<\|/'::I3_2II/D

12 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

4.5 Overview of the 64-lead LQFP Package
Figure 4-4. Orientation of the 64-lead LQFP Package

48 33

1 1]
49 = D 32

64 - P17
16

1

Refer to Section 37. “SAM4N Mechanical Characteristics” for mechanical drawings and specifications.

4.6 Overview of the 64-lead QFN Package

Figure 4-5. Orientation of the 64-lead QFN Package

64 49
UUUUUUUUUUUUUUUU

@)

48

uuuuuuuuuuuuuuuyu
NANNANAANNNNANANN

16 33

ANANNNNNNANNNNNNQ
17 32

TOP VIEW

Refer to Section 37. “SAM4N Mechanical Characteristics” for mechanical drawings and specifications.

SAMANS/SAMAN16 [DATASHEET 13
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

4.7 64-lead LQFP and QFN Pinout

Table 4-5. 64-pin SAM4N8/16 Pinout

1 ADVREFP 17 GND 33 TDI/PB4 49 | TDO/TRACESWO/PB5
2 GND 18 VDDIO 34 PA6/PGMNOE 50 JTAGSEL

3 PBO/AD4 19 PA16/PGMD4 35 PA5/PGMRDY 51 TMS/SWDIO/PB6
4 PB1/AD5 20 PA15/PGMD3 36 PA4/PGMNCMD 52 PA31

5 PB2/AD6 21 PA14/PGMD2 37 PA27/PGMD15 53 TCK/SWCLK/PB7
6 PB3/AD7 22 PA13/PGMD1 38 PA28 54 VDDCORE

7 VDDIN 23 PA24/PGMD12 39 NRST 55 ERASE/PB12
8 VDDOUT 24 VDDCORE 40 TST 56 PB10

9 PA17/PGMD5/AD0O 25 PA25/PGMD13 41 PA29 57 PB11

10 PA18/PGMD6/AD1 26 PA26/PGMD14 42 PA30 58 VDDIO

11 PA21/PGMD9/AD8 27 PA12/PGMDO 43 PA3 59 PB13/DACO

12 VDDCORE 28 PA11/PGMM3 44 PA2/PGMEN2 60 GND

13 PA19/PGMD7/AD2 29 PA10/PGMM2 45 VDDIO 61 XOuUT/PB8

14 PA22/PGMD10/AD9 30 PA9/PGMM1 46 GND 62 XIN/PGMCK/PB9
15 PA23/PGMD11 31 | PA8/XOUT32/PGMMO a7 PA1/PGMENL1 63 PB14

16 PA20/PGMDS8/AD3 32 PA7|/3XG”|\\IA3'§\//>XEILIJDT32/ 48 PAO/PGMENO 64 VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

14 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

4.8 Overview of the 48-lead LQFP Package

Figure 4-6. Orientation of the 48-lead LQFP Package

36 25
0 1]
374 D 24
484 -
='|u uf' 13
1 12

Refer to Section 37. “SAM4N Mechanical Characteristics” for mechanical drawings and specifications.

4.9 Overview of the 48-lead QFN Package

Figure 4-7. Orientation of the 48-lead QFN Package

48 37
guuuuuduuuuy
@

36

Uuuuuuuiuuuy
100ANAAANAAT

12 25

NaAnAAnAAnan
13 24

TOP VIEW

Refer to Section 37. “SAM4N Mechanical Characteristics” for mechanical drawings and specifications.

SAMANS/SAMAN16 [DATASHEET 15
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

4,10 48-lead LQFP and QFN Pinout

Table 4-6. 48-pin SAM4N8 Pinout

1 ADVREFP 13 VDDIO 25 TDI/PB4 37| TDO/TRACESWO/PB5
2 GND 14 PA16/PGMD4 26 PA6/PGMNOE 38 JTAGSEL

3 PBO/AD4 15 PA15/PGMD3 27 PA5/PGMRDY 39 TMS/SWDIO/PB6
4 PB1/AD5 16 PA14/PGMD2 28 PA4/PGMNCMD 40 TCK/SWCLK/PB7
5 PB2/AD6 17 PA13/PGMD1 29 NRST 41 VDDCORE

6 PB3/AD7 18 VDDCORE 30 TST 42 ERASE/PB12

7 VDDIN 19 PA12/PGMDO 31 PA3 43 PB10

8 VDDOUT 20 PA11/PGMM3 32 PA2/PGMEN2 44 PB11

9 PA17/PGMD5/AD0O 21 PA10/PGMM2 33 VDDIO 45 XOUT/PB8
10 PA18/PGMD6/AD1 22 PA9/PGMM1 34 GND 46 XIN/P/PB9/GMCK
11 PA19/PGMD7/AD2 23| PA8/XOUT32/PGMMO 35 PA1/PGMEN1 a7 VDDIO
12 PA20/AD3 24 | PA7/XIN32/PGMNVALID 36 PAO/PGMENO 48 VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

16 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

5. Power Considerations

5.1 Power Supplies

The SAM4NB8/16 product has several types of power supply pins:

e VDDCORE pins: power the core, including the processor, the embedded memaories and the peripherals;
voltage ranges from 1.08V to 1.32V.

e VDDIO pins: power the Peripherals I/O lines; voltage ranges from 1.62V to 3.6V.

e VDDIN pin: Voltage Regulator, ADC and DAC power supply; voltage ranges from 1.6V to 3.6V for Voltage
Regulator, ADC and DAC.

e VDDPLL pin: powers the Main Oscillator; voltage ranges from 1.08V to 1.32V.

5.2 Power-up Considerations

5.2.1 VDDIO Versus VDDCORE
Vppio Must always be higher than or equal to Vppcogre-

Vppio Must reach its minimum operating voltage (1.62 V) before Vppcore has reached Vippcorgmin: The minimum
slope for Vppcore is defined by (Vppcoregmin - Vr+) / trst

If Vppcore rises at the same time as Vpp,o, the Vpp g rising slope must be higher than or equal to 8.8 V/ms.
If VDDCORE is powered by the internal regulator, all power-up considerations are met

Figure 5-1. VDDCORE and VDDIO Constraints at Startup

Supply (V) 4
VDDIO
VDDIO(mm)
VDDCORE
VDDCORE(mln)
VT+
Time (t)

Core supply POR output

5.2.2 VDDIO Versus VDDIN

At power-up, Vppo Needs to reach 0.6 V before V reaches 1.0 V.
VDDIO voltage needs to be equal to or below (VDDIN voltage + 0.5 V).

SAMANS/SAMAN16 [DATASHEET 17
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

5.3 Voltage Regulator

The SAM4N embeds a core voltage regulator that is managed by the Supply Controller and that supplies the
Cortex-M4 core, internal memories (SRAM, ROM and Flash logic) and the peripherals. An internal adaptive
biasing adjusts the regulator quiescent current depending on the required load current.

For adequate input and output power supply decoupling/bypassing, refer to Table 36-3, “1.2V Voltage Regulator
Characteristics,” on page 795.

5.4 Typical Powering Schematics

The SAM4NB8/16 supports a 1.62-3.6 V single supply mode. The internal regulator input connected to the source
and its output feeds VDDCORE. Figure 5-2 shows the power schematics.

As VDDIN powers voltage regulator and ADC/DAC, when the user does not want to use the embedded voltage
regulator, he can disable it by software via the SUPC (note that it is different from backup mode).

Figure 5-2. Single Supply

VDDIO III

Main Supply (1.62-3.6 V) VDDIN E:I_
| Voltage
Regulator

T

VDDPLL E]

Note: For temperature sensor, VDDIO needs to be greater than 2.4V.

18 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 5-3. Core Externally Supplied

Main Supply (1.62-3.6 V) VDDIO
ADC/DAC Supply (1.62-3.6 V) VDDIN
l Voltage
Regulator
VDDOUT

VDDCORE Supply (1.08-1.32V) \ppcORE

VDDPLL

Note: For temperature sensor, VDDIO needs to be greater than 2.4V.

Figure 5-4 provides an example of the powering scheme when using a backup battery. Since the PIO state is
preserved when in backup mode, any free PIO line can be used to switch off the external regulator by driving the
PIO line at low level (PIO is input, pull-up enabled after backup reset). External wake-up of the system can be from
a push button or any signal, see Section 5.7 “Wake-up Sources” for further details.

VDDIO
4 10s

Figure 5-4. Core Externally Supplied (Backup Battery)
ADC, DAC,

Backup battery . I'
Analog Comp.

I VDDIN |I|)
Main Supply [~ ot VDDOUT LT_l
Voltage

3.3VLDO ! Regulator

o VDDCOREIII'
ON/OFF III
VDDPLL E:I

I | | PIOx (Output)

- WAKEUPXx
External wakeup signal |I|

Note: The two diodes provide a “switchover circuit (for illustration purpose)
between the backup battery and the main supply when the system is put in
backup mode.

Note: For temperature sensor, VDDIO needs to be greater than 2.4V.

SAMANS/SAMAN16 [DATASHEET 19
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

55 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal
oscillator or the PLL. The power management controller can be used to adapt the frequency and to disable the
peripheral clocks.

5.6 Low-power Modes

The SAM4N has the following low-power modes: Backup, Wait, and Sleep.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power modes,
however, this may add complexity in the design of application state machines. This is due to the fact that the WFE
instruction goes along with an event flag of the Cortex core (cannot be managed by the software application). The
event flag can be set by interrupts, a debug event or an event signal from another processor. Since it is possible for an
interrupt to occur just before the execution of WFE, WFE takes into account events that happened in the past. As a
result, WFE prevents the device from entering Wait mode if an interrupt event has occurred.

Atmel has made provisions to avoid using the WFE instruction. The workarounds to ease application design are as
follows:

- For Backup mode, switch off the voltage regulator and configure the VROFF bit in the Supply Controller Control
Register (SUPC_CR).

- For Wait mode, configure the WAITMODE bit in the PMC Clock Generator Main Oscillator Register of the Power
Management Controller (PMC)

- For Sleep mode, use the Wait for Interrupt (WFI) instruction.

Complete information is available in Table 5-1 “Low Power Mode Configuration Summary”.

5.6.1 Backup Mode

The purpose of Backup mode is to achieve the lowest power consumption possible in a system which is
performing periodic wake-ups to perform tasks but not requiring fast startup time. Total current consumption is
1 pA typical (VDDIO = 1.8V at 25°C).

The Supply Controller, zero-power power-on reset, RTT, RTC, backup registers and 32 kHz oscillator (RC or
crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are
off.

The SAMA4N can be awakened from this mode using the pins WKUP0-15, the supply monitor (SM), the RTT or
RTC wake-up event.

Backup mode can be entered by using the VROFF bit in the Supply Controller Control Register (SUPC_CR) or by
using the WFE instruction. The corresponding procedures are described below.

The procedure to enter Backup mode using the VROFF bit is the following:

Write a 1 to the VROFF bit in SUPC_CR (SUPC_CR.KEY field value must be configured correctly; refer to
Section 17.5.3 “Supply Controller Control Register”).
The procedure to enter Backup mode using the WFE instruction is the following:

1. Write a1 to the SLEEPDEEP bit in the Cortex-M4 processor System Control Register (SBC_SCR) (refer to
Section 11.9.1.6 “System Control Register”).

2. Execute the WFE instruction of the processor.

In both cases, exit from Backup mode happens if one of the following enable wake-up events occurs:
Level transition, configurable debouncing on pins WKUPENO-15

Supply Monitor alarm

RTC alarm

RTT alarm

20 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

5.6.2 Wait Mode

The purpose of the Wait mode is to achieve very low power consumption while maintaining the whole device in a
powered state for a startup time of less than 10 ps. Current consumption in wait mode is typically 32 pA (total
current consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and
memories power supplies are still powered. From this mode, a fast startup is available.

This mode is entered by setting the WAITMODE bit in the PMC Clock Generator Main Oscillator Register
(CKGR_MOR) in conjunction with configuring the Flash Low Power Mode field (FLPM = 00 or 01) in the PMC Fast
Startup Mode Register (PMC_FSMR) or by the WFE instruction.

The Cortex-M4 is able to handle external events or internal events in order to wake up the core. This is done by
configuring the external lines WKUPO-15 as fast startup wake-up pins (refer to Section 5.8 “Fast Startup”). RTC or
RTT alarm can be used to wake up the CPU.
The procedure to enter Wait mode using the WAITMODE bit is the following:
1. Selectthe 4/8/12 MHz fast RC oscillator as source of MCK Clock
2. Configure the FLPM field in PMC_FSMR
3. Set Flash wait state to 0
4. Set the WAITMODE bit in CKGR_MOR
5. Wait for Master Clock Ready MCKRDY =1 in the PMC Status Register (PMC_SR)
The procedure to enter Wait mode using the WFE instruction is the following:
1. Select the 4/8/12 MHz fast RC oscillator as Main Clock.
Set the FLPM field in the PMC_FSMR.
Set Flash wait state to O.
Set the LPM bit in the PMC_FSMR.
Execute the WFE instruction of the processor.

a s~ N

In both cases, depending on the value of the field FLPM, the Flash enters one of three different modes:
e FLPM =0 in Standby mode (low consumption)
e FLPM =1 in Deep power-down mode (extra low consumption)
e FLPM =2 in Idle mode. Memory ready for Read access

Table 5-1 summarizes the power consumption, wake-up time and system state in Wait mode.

5.6.3 Sleep Mode

The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this mode,
only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is
application dependent.

This mode is entered via WFI or WFE instructions with bit LPM = 0 in PMC_FSMR.

The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 is used or from an event
if the WFE instruction is used.

5.6.4 Low Power Mode Summary Table

The modes detailed above are the main low power modes. Each part can be set to on or off separately and wake-
up sources can be individually configured. Table 5-1 shows a summary of the configurations of the low power
modes.

SAMANS/SAMAN16 [DATASHEET 21
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

GT-IBIN-€Z 199USeIRa-9TNYINVS-8NYINYS-INYV1Y-8STTT-[BuWiY

44

[L33HSVYLVAl 9TNYINVS/SNYINYS

oWy

Table 5-1. Low Power Mode Configuration Summary
SUPC, 32 kHz Osc.,
RTC, RTT, GPBR, PIO State
POR CoreMemory Core at |while in Low- | PIO State at [Consumption|Wake-up
Mode (VDDBU Region) |Regulator| Peripherals Mode Entry Potential Wake-up Sources |Wake-up | power Mode | Wake-up @ Time®
VROFF =1 Pins WKUPO-15 PIOA &
OFF or SM alarm Previous state PIOB &
Backup Mode ON OFF Reset PIOC 0.9pAtyp® | <1ms
(Not powered) \yrE RTC alarm saved Inputs with
+SLEEPDEEP =1 |RTT alarm pull-ups
WAITMODE =1
+FLPM =0 Any event from:
Wait Mode or - Fast startup through pins ;
) Powered Clocked |Previous state ©)
< W/ISIt;alsh |nd ON ON (Not clocked) WEE WKUPO-15 back saved Unchanged 28.4 pA <10 pus
tandby Mode + SLEEPDEEP = 0 - RTC alarm
+LPM=1 - RTT alarm
+FLPM =0
WAITMODE =1
) +FLPM =1 Any event from:
Wait Mode or Fast startup th h i
w/Flash in Powered - Fast startup through pins Clocked |Previous state
(5)
Deep Power ON ON (Not clocked) |WFE WKUPO-15 back saved Unchanged 23.9 UA <100 ps
Down Mode + SLEEPDEEP =0 |- RTC alarm
+LPM=1 - RTT alarm
+FLPM =1
Entry mode = WFI
Interrupt only; any enabled
WEFE interrupt
or Entry mode = WFE
. .
Sleep Mode ON ON Powered"” Any enabled interrupt and/or Clocked |Previous state Unchanged ®) ©)
(Not clocked) |WF! any event from: back saved
+ SLEEPDEEP =0 ’
+LPM=0 - Fast startup through pins
WKUPO0-15
- RTC alarm
- RTT alarm
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz fast RC

oscillator. The user has to add the PLL startup time if it is needed in the system. The wake-up time is defined as the time taken for wake-up until the first
instruction is fetched.

No ok whN

The external loads on PIOs are not taken into account in the calculation.
BOD current consumption is not included.
Total consumption 0.9 pA typ at 1.8V on VDDIO at 25°C.
Total consumption (VDDIO + VDDIN)
Depends on MCK frequency.
In this mode the core is supplied and not clocked but some peripherals can be clocked.

5.7 Wake-up Sources

The wake-up events allow the device to exit the Backup mode. When a wake-up event is detected, the Supply
Controller performs a sequence which automatically reenables the core power supply and the SRAM power
supply, if they are not already enabled. See Figure 17-4, "Wake-up Sources" on page 311.

5.8 Fast Startup

The SAM4N8/16 allows the processor to restart in a few microseconds while the processor is in Wait mode. A fast
startup can occur upon detection of a low level on one of the 18 wake-up inputs (WKUPO to 15 + RTC + RTT).

The fast restart circuitry (shown in Figure 25-3, "Fast Start-up Circuitry” on page 401) is fully asynchronous and
provides a fast startup signal to the Power Management Controller. As soon as the fast startup signal is asserted,
the PMC automatically restarts the embedded 4/18/12 MHz fast RC oscillator, switches the master clock on this 4
MHz clock by default and reenables the processor clock.

SAMANS/SAMAN16 [DATASHEET 23
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

6. Input/Output Lines

The SAM4N8/16 has several kinds of input/output (1/0O) lines such as general purpose 1/0Os (GPIO) and system
I/Os. GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO
line can be used whether in I/0O mode or by the multiplexed peripheral. System 1/Os include pins such as test pins,
oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines

GPIO lines are managed by PIO controllers. All I/Os have several input or output modes such as pull-up or pull-
down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt.
Programming of these modes is performed independently for each 1/O line through the PIO controller user
interface. For more details, refer to Section 27. “Parallel Input/Output (PIO) Controller”.

Some GPIOs can have alternate function as analog input. When the GPIO is set in analog mode, all digital
features of the I/O are disabled.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.
The SAM4N8/16 embeds high-speed pads. See Section 36.10 “AC Characteristics” for more details.

Each 1/O line also embeds an ODT (On-Die Termination) (see Figure 6-1). It consists of an internal series resistor
termination scheme for impedance matching between the driver output (SAM4N) and the PCB track impedance,
preventing signal reflection. The series resistor helps to reduce 10s switching current (di/dt) thereby reducing in
turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between
devices or between boards. In conclusion, ODT helps diminish signal integrity issues.

Figure 6-1. On-die Termination

et S/ D AP I

1 1

1 1

' obT |

i 36 Q Typ. !

! i

I S VYV « T E _____
E RODT 1 1 1

i i Receiver
! SAM4 Driver with ! PCB Track

E. Z,~100Q _E Z0~50Q

24 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

6.2 System I/O Lines
Table 6-1 lists the SAM4N system I/O lines shared with PIO lines.

These pins are software configurable as general purpose 1/O or system pins. At startup, the default function of
these pins is always used.

Table 6-1. System I/O Configuration
CCFG_SYSIO Default Function Constraints for
Bit No. after Reset Other Function Normal Start Configuration
12 ERASE PB12 Low level at startup™)
’ TCK/SWCLK PB7 - In Matrix User Interface Registers (Refer
6 TMS/SWDIO PB6 - to System 1/O Configuration Register in
5 TDO/TRACESWO PB5 _ Section 22. “Bus Matrix (MATRIX)".)
4 TDI PB4 -
- PA7 XIN32 - @
- PA8 XOuUT32 -
- PB9 XIN - @
- PB8 XOouT -

Notes: 1. If PB12is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the
user application sets PB12 into PIO mode.

2. Refer to Section 17.4.2 “Slow Clock Generator”.
3. Referto Section 24.5.3 “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator”.

6.2.1 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/TRACESWO, TDI and commonly provided on a standard
20-pin JTAG connector defined by ARM. For more details about voltage reference and reset state, refer to Table
3-1 on page 5.

At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer
to Section 12. “Debug and Test Features”.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port
is not needed in the end application. Mode selection between SWJ-DP mode (system 10 mode) and general 1O
mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad
for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a
permanent pull-down resistor of about 15 kQ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and
enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be
used with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to
Section 12. “Debug and Test Features”.

6.3 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM4N
series. The TST pin integrates a permanent pull-down resistor of about 15 kQ to GND, so that it can be left
unconnected for normal operations. To enter fast programming mode, see Section 20. “Fast Flash Programming
Interface (FFPI)”. For more on the manufacturing and test mode, refer to Section 12. “Debug and Test Features”.

SAMANS/SAMAN16 [DATASHEET 25
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

6.4 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset
signal to the external components or asserted low externally to reset the microcontroller. It will reset the core and
the peripherals except the backup region (RTC, RTT and Supply Controller). There is no constraint on the length
of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a
permanent pull-up resistor to VDDIO of about 100 kQ2. By default, the NRST pin is configured as an input.

6.5 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read
as logic level 1). The ERASE pin and the ROM code ensure an in-situ re-programmability of the Flash content
without the use of a debug tool. When the security bit is activated, the ERASE pin provides a capability to
reprogram the Flash array. It integrates a pull-down resistor of about 100 kQ to GND, so that it can be left
unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. To avoid unexpected erase at power-up, a
minimum ERASE pin assertion time is required. This time is defined in Table 36-46 "AC Flash Characteristics".

The ERASE pin is a system I/O pin and can be used as a standard 1/O. At startup, the ERASE pin is not configured
as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of this pin must be low to prevent unwanted
erasing. Refer to Section 10.2 “Peripherals Signals Multiplexing on I/O Lines” on page 36. Also, if the ERASE pin
is used as a standard I/O output, asserting the pin to low does not erase the Flash.

6.6 Anti-tamper Pins/Low-power Tamper Detection

WKUPO and WKUP1 generic wake-up pins can be used as anti-tamper pins. Anti-tamper pins detect intrusion, for
example, into a housing box. Upon detection through a tamper switch, automatic, asynchronous and immediate
clear of registers in the backup area will be performed. Anti-tamper pins can be used in all power modes
(Backup/Wait/Sleep/Active). Anti-tampering events can be programmed so that half of the General Purpose
Backup Registers (GPBR) are erased automatically. See Section 17. “Supply Controller (SUPC)” for further
description.

26 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

7.

7.1

Atmel

Memories

Product Mapping

Figure 7-1. SAMA4N8/16 Product Mapping
0x00000000 ~ddress memory space
Code
0x20000000
Internal SRAM
0x40000000
Peripherals
0x60000000
Reserved l'.
0xE0000000
System
OXFFFFFFFF
offset " :
peripheral

(+ : wired-or)

.......... 0x00000000- Code
Boot Memory
0x00400000
Internal Flash
. 0x00800000
’~“:::_~~ Internal ROM
‘\:*exo_ocooooo
‘\\"“x_\ Reserved
. ox1 PEgFFﬁF
%‘1".:\ 0x20000(;;)~6” Internal SRAM
SRAM
0x20080000
Undefined (Abort)
! 0x40000000°
',“ 0x4000000‘(;‘ Peripherals
"‘ Reserved
| 0x40004000
Reserved
| 0x40008000
| SPI
0x4000C000 21
I'. Reserved
H 0x40010000
TCO 1o
| +0x40 23
! TCO T
I'. +0x80 24
! TCO Te2
\ 0x40014000 25
: TCA Tca
| +0x40 2
i TC1 Tca
+0x80 27
“ TC1 Tcs
0x40018000 28
: TWIO
0x4001C000
| TWI1
0x40020000
| PWM
0%40024000
H USARTO
0x40028000
USART1
0x4902C000
' USART2
0x40030000
'-‘ Reserved
0x40034000
I'. Reserved
0x40038000
| ADC
0x4003C000
| DACC
0x40040000
TWI2
0x40044000
' UART2
0x40048000
H UART3
0x4004C000
'-‘ Reserved
0x400E0000 K
B System Controller N
0x400E2600"
H Reserved
0x60000000

0x400E0000 System Controller
K Reserved
0x400E0200 ;
! MATRIX
0x400E040Q
PMC
0x400E0600 5
UARTO
0x400E0740 8
H CHIPID
0x400E0800
UART1
0x400E0A0D 9
EFC
0x400EGC00 6
," Reserved
0x400EOE00
! PIOA
0x400E1000 1
PIOB
0x400E1200 12
: PIOC
0x400E1400 13
H SYSC grstc
{ +0x10 1
i SYSC e
! +0x30
; sYsC ..
! +0x50 3
; SYSC oo
i +0x60 4
; SYSC g
{ +0x90 2
; SYSC opm
0x400E1600
," Reserved
0x4007FFFF |

.

SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

7.2 Embedded Memories

7.2.1 Internal SRAM
The SAM4NS8 product embeds a total of 64-Kbytes high-speed SRAM.
The SAM4N16 product embeds a total of 80-Kbytes high-speed SRAM.
The SRAM is accessible over system Cortex-M4 bus at address 0x2000 0000.
The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 to Ox23FF FFFF.
RAM size must be configurable by calibration fuses.

7.2.2 Internal ROM

The SAM4N8/16 product embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA®), In
Application Programming (IAP) routines and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

7.2.3 Embedded Flash

7.2.3.1 Flash Overview

The memory is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is divided
into three smaller sectors.

The three smaller sectors are organized to consist of two sectors of 8 Kbytes and one sector of 48 Kbytes. Refer to
Figure 7-2 “Global Flash Organization”.

Figure 7-2. Global Flash Organization

Flash Organization

Sector size Sector name

8 Kbytes Small sector 0

8 Kbytes Small sector 1 Sector 0
48 Kbytes Larger sector

64 Kbytes Sector 1

64 Kbytes Sector n

28 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Each sector is organized in pages of 512 bytes.

For sector O:
e The smaller sector 0 has 16 pages of 512 bytes
e The smaller sector 1 has 16 pages of 512 bytes
e The larger sector has 96 pages of 512 bytes
From sector 1 to n:

The rest of the array is composed of 64 Kbytes sectors each of 128 pages of 512 bytes. Refer to Figure 7-3 “Flash
Sector Organization”.

Figure 7-3. Flash Sector Organization

Flash Sector Organization

A sector size is 64 Kbytes

16 pages of 512 bytes Smaller sector 0

Sector 0 16 pages of 512 bytes Smaller sector 1

96 pages of 512 bytes Larger sector

Sector n 128 pages of 512 bytes

Flash size varies by product:
e SAMA4N16 the Flash size is 1024 Kbytes
e SAMA4NS the Flash size is 512 Kbytes

Figure 7-4 “Flash Size” illustrates the Flash organization by size.

Figure 7-4. Flash Size

Flash 1 Mbyte Flash 512 Kbytes
2 * 8 Kbytes 2 * 8 Kbytes
1* 48 Kbytes 1* 48 Kbytes

15 * 64 Kbytes 7 * 64 Kbytes

Erasing the memory can be performed as follows:
e On abl2-byte page inside a sector of 8 Kbytes
Note: EWP and EWPL commands can be only used in 8 Kbytes sectors.

SAMANS/SAMAN16 [DATASHEET 29
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

e On a4-Kbyte block inside a sector of 8 Kbytes/48 Kbytes/64 Kbytes
Note: Erase Page commands can be only used with FARG[1:0] =1

e On a sector of 8 Kbytes/48 Kbytes/64 Kbytes
Note: Erase Page commands can be only used with FARG[1:0] = 2

e Onchip

The memory has one additional reprogrammable page that can be used as page signature by the user. It is
accessible through specific modes, for erase, write and read operations. Erase pin assertion will not erase the
User Signature page.

7.2.3.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables
reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.
It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

7.2.3.3 Flash Speed
The user needs to set the number of wait states depending on the frequency used:
For more details, refer to Section 36.10 “AC Characteristics”.

7.2.3.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of
several consecutive pages, and each lock region has its associated lock bit.

Table 7-1. Lock Bit Number
Product Number of Lock Bits Lock Region Size
SAM4NS8 64 8 Kbytes
SAM4N16 128 8 Kbytes

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC triggers an
interrupt.

The lock bits are software programmable through the EEFC User Interface. The “Set Lock Bit” command enables
the protection. The “Clear Lock Bit” command unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

7.2.3.5 Security Bit Feature

The SAM4N8/16 features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals either through the
ICE interface or through the Fast Flash Programming Interface (FFPI), is forbidden. This ensures the
confidentiality of the code programmed in the Flash.

This security bit can only be enabled, through the “Set General Purpose NVM Bit 0" command of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash
erase is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core Registers, Internal
Peripherals are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

30 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

7.2.3.6

7.2.3.7

7.2.3.8

7.2.3.9

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation.
However, it is safer to connect it directly to GND for the final application.

Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured
and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed
by the user. The ERASE pin has no effect on the unique identifier.

Fast Flash Programming Interface (FFPI)

The FFPI allows programming the device through either a serial JTAG interface or through a multiplexed fully-
handshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.
The FFPI is enabled and the Fast Programming mode is entered when TST and PAO and PAL1 are tied low.

SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash
memory.

The SAM-BA Boot Assistant supports serial communication via the UARTO.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

7.2.3.10 GPNVM Bits

7.2.4

The SAMA4N features two GPNVM bits that can be cleared or set respectively through the “Clear GPNVM Bit” and
“Set GPNVM Bit” commands of the EEFC User Interface.

Table 7-2. General-purpose Non-volatile Memory Bits
GPNVM Bit[#] Function
0 Security bit
1 Boot mode selection

Boot Strategies

The system always boots at address 0x0. To ensure a maximum boot possibilities the memory layout can be
changed via GPNVM.

A General Purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the "Clear General-purpose NVM Bit" and "Set
General-purpose NVM Bit" commands of the EEFC User Interface.

Setting the GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting
ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

SAMANS/SAMAN16 [DATASHEET 31
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

8. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these
events without processor intervention. Peripherals receiving events contain logic by which to determine and
perform the action required.

8.1 Embedded Characteristics

e Timers, 10 peripherals generate event triggers which are directly routed to event managers such as ADC,
DACC, for example, to start measurement/conversion without processor intervention.

e UART, USART, SPI, TWI, ADC, DACC, PIO also generate event triggers directly connected to Peripheral
DMA Controller (PDC) for data transfer without processor intervention.

e PMC security event (clock failure detection) can be programmed to switch the MCK on reliable main RC
internal clock without processor intervention.

8.2 Real-time Event Mapping List

Table 8-1. Real-time Event Mapping List

Event Generator Event Manager Function

10 (WKUPO/1) General Purpose Backup Register Security / Inmediate GPBR clear (asynchronous)

(GPBR) on tamper detection through WKUPO/1 IO pins
Power Management Controller Safety / Automatic switch to reliable main RC
PMC) . : .

(PMC) oscillator in case of main crystal clock failure
10 (ADTRG) Analog-to-Digital Converter (ADC) Trigger for measurement. Selection in ADC module
TC Output 0 ADC Trigger for measurement. Selection in ADC module
TC Output 1 ADC Trigger for measurement. Selection in ADC module
TC Output 2 ADC Trigger for measurement. Selection in ADC module

Digital-Analog Converter Controller

10 (DATRG) (DACC) Trigger for conversion. Selection in DAC module
TC Output 0 DACC Trigger for conversion. Selection in DAC module
TC Output 1 DACC Trigger for conversion. Selection in DAC module
TC Output 2 DACC Trigger for conversion. Selection in DAC module
32 SAMANS/SAMAN16 [DATASHEET
[] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

9. System Controller

The System Controller is a set of peripherals which allow handling of key elements of the system, such as but not
limited to power, resets, clocks, time, interrupts, and watchdog.

9.1 System Controller and Peripherals Mapping
Please refer to Figure 7-1 “SAM4N8/16 Product Mapping”.
All the peripherals are in the bit band region and are mapped in the bit band alias region.

9.2 Power-on-Reset, Brownout and Supply Monitor

The SAM4N embeds three features to monitor, warn and/or reset the chip:
e Power-on-Reset on VDDIO
e Brownout Detector on VDDCORE
e Supply Monitor on VDDIO

9.2.1 Power-on-Reset on VDDIO

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at startup but also during power
down. If VDDIO goes below the threshold voltage, the entire chip is reset.

For more information, refer to Section 36. “SAM4N Electrical Characteristics”.

9.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the
Supply Controller Mode Register (SUPC_MR). It is especially recommended to disable it during low-power modes
such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to
Section 17. “Supply Controller (SUPC)” and Section 36. “SAM4N Electrical Characteristics”.

9.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully
programmable with 16 steps for the threshold (between 1.6V to 3.4V). It is controlled by the Supply Controller
(SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to
2048.

For more information, refer to Section 17. “Supply Controller (SUPC)” and Section 36. “SAM4N Electrical
Characteristics”.

9.3 SysTick Timer
e 24-bit down counter
e Self-reload capability
e Flexible system timer

SAMANS/SAMAN16 [DATASHEET 33
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

10. Peripherals

10.1 Peripheral Identifiers

Table 10-1 defines the peripheral identifiers of the SAM4N8/16. A peripheral identifier is required for the control of
the peripheral interrupt with the Nested Vectored Interrupt Controller and for the control of the peripheral clock with
the Power Management Controller.

Table 10-1. Peripheral Identifiers

NVIC PMC

Instance ID | Instance Name Interrupt Clock Control | Instance Description
0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real-time Clock
3 RTT X Real-time Timer
4 WDT X Watchdog Timer
5 PMC X Power Management Controller
6 EFC X Enhanced Flash Controller
7 - - - Reserved
8 UARTO X X Universal Asynchronous Receiver Transmitter O
9 UART1 X X Universal Asynchronous Receiver Transmitter 1
10 UART2 X X Universal Asynchronous Receiver Transmitter 2
11 PIOA X X Parallel 1/0 Controller A
12 PIOB X X Parallel 1/0O Controller B
13 PIOC X X Parallel I/O Controller C
14 USARTO X X Universal Synchronous Asynchronous Receiver Transmitter O
15 USART1 X X Universal Synchronous Asynchronous Receiver Transmitter 1
16 UART3 X X Universal Asynchronous Receiver Transmitter 3
17 USART2 X X Universal Synchronous Asynchronous Receiver Transmitter 2
18 - - - Reserved
19 TWIO X X Two-wire Interface 0
20 TWI1 X X Two-wire Interface 1
21 SPI X X Serial Peripheral Interface
22 TWI2 X X Two-wire Interface 2
23 TCO X X Timer Counter Channel 0
24 TC1 X X Timer Counter Channel 1
25 TC2 X X Timer Counter Channel 2
26 TC3 X X Timer Counter Channel 3
27 TC4 X X Timer Counter Channel 4
28 TC5 X X Timer Counter Channel 5

34 SAMANS/SAMAN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 10-1. Peripheral Identifiers (Continued)
NVIC PMC
Instance ID | Instance Name Interrupt Clock Control | Instance Description
29 ADC X X Analog-to-Digital Converter
30 DACC X X Digital-to-Analog Converter Controller
31 PWM X X Pulse Width Modulation

Atmel

SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

35

10.2 Peripherals Signals Multiplexing on I/O Lines

The SAM4N8/16 product features two PIO (48-pin and 64-pin version) or three PIO (100-pin version) controllers,
PIOA, PIOB and PIOC, which multiplex the 1/O lines of the peripheral set.

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of three peripheral functions: A, B or
C. The following multiplexing tables define how the I/O lines of the peripherals A, B and C are multiplexed on the
P10 controllers.

Note that some output-only peripheral functions might be duplicated within the tables.

36 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

10.2.1 PIO Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PAO PWMO TIOAO wKupPoW High Drive
PA1 PWM1 TIOBO wKupP1® High Drive
PA2 PWM2 SCKO DATRG wkup2W High Drive
PA3 TWDO NPCS3 High Drive
PA4 TWCKO TCLKO WKUP3W
PA5 RXDO NPCS3 wKUP4W
PA6 TXDO PCKO
PA7 RTSO PWM3 XIN32®
PA8 CTSO ADTRG WKUpP5®W XouT32@
PA9 URXDO NPCS1 WKUP6W
PA10 UTXDO NPCS2
PA11 NPCSO0 PWMO WKUP7®
PA12 MISO PWM1
PA13 MOSI PWM2
PA14 SPCK PWM3 wKupg®W
PA15 UTXD2 TIOA1L WKUP14®W
PA16 URXD2 TIOB1 WKUP15®W
PA17 PCK1 ADO®)
PA18 PCK2 AD1C)
PA19 AD2/WKUP9®¥
PA20 AD3/WKUP10¥
PA21 RXD1 PCK1 AD8® 64/100 pins versions
PA22 TXD1 NPCS3 AD9® 64/100 pins versions
PA23 SCK1 PWMO 64/100 pins versions
PA24 RTS1 PWM1 64/100 pins versions
PA25 CTSs1 PWM2 64/100 pins versions
PA26 TIOA2 64/100 pins versions
PA27 TIOB2 64/100 pins versions
PA28 TCLK1 64/100 pins versions
PA29 TCLK2 64/100 pins versions
PA30 NPCS2 WKUP11®W 64/100 pins versions
PA31 NPCS1 PCK2 64/100 pins versions

Notes: 1. WKUPx can be used if PIO controller defines the 1/O line as "input".

1
2. Refer to Section 6.2 “System 1/O Lines".

3. To select this extra function, refer to Section 34.5.3 “Analog Inputs”.
4. Analog input has priority over WKUPX pin.

SAMANS/SAMAN16 [DATASHEET 37
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

10.2.2 PIO Controller B Multiplexing

Table 10-3. Multiplexing on PIO Controller B (PIOB)

/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments

PBO PWMO TWD2 AD4®M)

PB1 PWM1 TWCK2 AD5®)

PB2 URXD1 NPCS2 AD6/WKUP12?)

PB3 UTXD1 PCK2 AD7®)

PB4 TWD1 PWM2 TDI®

PB5 TWCK1 WKUP13® TDO/TRACESWO®)

PB6 TMS/SWDIO®)

PB7 TCK/SWCLK®

PBS XOouT®

PB9 XIN®

PB10 URXD3

PB11 UTXD3

PB12 ERASE®)

PB13 PCKO DACO® 64/100 pins versions

PB14 NPCS1 PWM3 64/100 pins versions
Notes: 1. To select this extra function, refer to Section 34.5.3 “Analog Inputs”.

1

2. Analog input has priority over WKUPX pin.

3. Refer to Section 6.2 “System I/O Lines”.

4. WKUPXx can be used if PIO controller defines the 1/O line as "input".

5. DACO is enabled when DACC_MR.DACEN is set. See Section 35.7.2 “DACC Mode Register”.

38 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

10.2.3 PIO Controller C Multiplexing

Table 10-4. Multiplexing on PIO Controller C (PIOC)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PCO 100 pins version
PC1 100 pins version
PC2 100 pins version
PC3 100 pins version
PC4 NPCS1 100 pins version
PC5 100 pins version
PC6 100 pins version
PC7 NPCS2 100 pins version
PC8 PWMO 100 pins version
PC9 RXD2 PWM1 100 pins version
PC10 TXD2 PWM2 100 pins version
PC11 PWM3 100 pins version
PC12 AD12® 100 pins version
PC13 AD10% 100 pins version
PC14 SCK2 PCK2 100 pins version
PC15 AD11® 100 pins version
PC16 RTS2 PCKO 100 pins version
PC17 CTS2 PCK1 100 pins version
PC18 PWMO 100 pins version
PC19 PWM1 100 pins version
PC20 PWM2 100 pins version
PC21 PWM3 100 pins version
PC22 PWMO 100 pins version
PC23 TIOA3 100 pins version
PC24 TIOB3 100 pins version
PC25 TCLK3 100 pins version
PC26 TIOA4 100 pins version
pPC27 TIOB4 100 pins version
PC28 TCLK4 100 pins version
PC29 TIOAS AD13™" 100 pins version
PC30 TIOB5 AD14®") 100 pins version
PC31 TCLK5 AD15% 100 pins version

Notes: 1. To select this extra function, refer to Section 34.5.3 “Analog Inputs”.

Atmel

SAM4N8/SAM4AN16 [DATASHEET] 39

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

10.3 Embedded Peripherals Overview

10.3.1 Analog Mux

The Analog Mux is used to enable any of the 16 ADC analog inputs and the temperature sensor by means of the
ADC Channel Enable Register (ADC_CHER).

The temperature sensor is internally connected to the 17th input of the analog mux.

10.3.2 Voltage Reference Block

The ADC/DAC cell features one internal voltage reference block
e 3Vtyp., 2V to 3.6V supply voltage operation
Power by analog power supply voltage
20 PA typ. current consumption
4 bits trimmable output value from 1.6V to 3.4V, 121 mV steps
3 bits trimmable temperature compensation
Low noise in the 10 Hz—100 kHz bandwidth (-74 dBV typ.), usable for a 10-bit ADC reference
PSRR DC higher than 60 dB typ.
3.6 kQ/100 nF load availability
Sense pin for VREF output
Only one external component needed (100 nF decoupling)
Direct reference connection to the supply voltage possible using force control pin
Level shifters with reset included (for digital supply detection flat)

Five output currents available (one 1 YA, three 2 pA and one 10 pA PTAT sourced form analog power
supply) and can be activated independently from the VREF buffer

10.3.3 Peripheral DMA Controller (PDC)
e Handles data transfer between peripherals and memories
e Twenty-three channels
— Six for USARTO0/1/2
— Six for the UARTO0/1/2
— Six for Two-wire Interface (TWI0/1/2)
— Two for Serial Peripheral Interface (SPI)
— One for Timer Counter 0
— One for Analog-to-Digital Converter
— One for the Digital-to-Analog Converter
e Low bus arbitration overhead
— One Master Clock cycle needed for a transfer from memory to peripheral
— Two Master Clock cycles needed for a transfer from peripheral to memory
e Next pointer management for reducing interrupt latency requirement

The PDC handles transfer requests from the channel according to the priorities (low to high priorities) defined in
Table 10-5.

40 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 10-5. Peripheral DMA Controller

Instance Name Channel T/R
TWIO Transmit
TWI1 Transmit
TWI2 Transmit

UARTO Transmit
UART1 Transmit
UART2 Transmit
USARTO Transmit
USART1 Transmit
USART2 Transmit
DACC Transmit
SPI Transmit
TCO-TC2 Receive
TWIO Receive
TWI1 Receive
TWI2 Receive
UARTO Receive
UART1 Receive
UART2 Receive
USARTO Receive
USART1 Receive
USART2 Receive
ADC Receive
SPI Receive
/ItmeL SAM4ANS/SAMAN16 [DATASHEET] 41

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11. ARM Cortex-M4

11.1 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt
handling, enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core,
system and memories, ultra-low power consumption with integrated sleep modes, and platform security
robustness, with integrated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard
architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power
efficiency through an efficient instruction set and extensively optimized design, providing high-end processing
hardware including a range of single-cycle and SIMD multiplication and multiply-with-accumulate capabilities,
saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug
capabilities. The Cortex-M4 processor implements a version of the Thumb® instruction set based on Thumb-2
technology, ensuring high code density and reduced program memory requirements. The Cortex-M4 instruction
set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of
8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt
performance. The NVIC includes a hon-maskable interrupt (NMI), and provides up to 256 interrupt priority levels.
The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs),
dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the
ability to suspend load-multiple and store-multiple operations. Interrupt handlers do not require wrapping in
assembler code, removing any code overhead from the ISRs. A tail-chain optimization also significantly reduces
the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

11.1.1 System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables
faster peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task
basis. Such requirements are becoming critical in many embedded applications such as automotive.

11.1.2 Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of
the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is
ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints
and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial
Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information
through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to 8 hardware breakpoint comparators that debuggers can
use. The comparators in the FPB also provide remap functions of up to 8 words in the program code in the CODE

42 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

memory region. This enables applications stored on a non-erasable, ROM-based microcontroller to be patched if a
small programmable memory, for example flash, is available in the device. During initialization, the application in
ROM detects, from the programmable memory, whether a patch is required. If a patch is required, the application
programs the FPB to remap a number of addresses. When those addresses are accessed, the accesses are
redirected to a remap table specified in the FPB configuration, which means the program in the non-modifiable
ROM can be patched.

11.2 Embedded Characteristics

e Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
Code-patch ability for ROM system updates
Power control optimization of system components
Integrated sleep modes for low power consumption
Fast code execution permits slower processor clock or increases sleep mode time
Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing
Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications
Extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing,
and code profiling.

11.3 Block Diagram

Figure 11-1. TTypical Cortex-M4 Implementation

Cortex-M4
Processor
NVIC [€P>
Processor
Core
t A
4
Debug Memor Serial
4——» Access ProtectionyUnit Wire >
Port ¢ t Viewer
Flash Data
Patch \Watchpoints
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A
v v
SAM4ANS/SAMAN16 [DATASHEET] 43
Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4 Cortex-M4 Models

11.4.1 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

11.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:

e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.

e Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception
processing.
The privilege levels for software execution are:
e Unprivileged
The software:
— Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
— Cannot access the System Timer, NVIC, or System Control Block
— Might have a restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.
e Privileged
The software can use all the instructions and has access to all resources. Privileged software executes at
the privileged level.

In Thread mode, the CONTROL register controls whether the software execution is privileged or unprivileged, see
“CONTROL Register” . In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

11.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked
item in memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then
writes the item to the new memory location. The processor implements two stacks, the main stack and the process
stack, with a pointer for each held in independent registers, see “Stack Pointer” .

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack,
see “CONTROL Register” .

In Handler mode, the processor always uses the main stack.
The options for processor operations are:

Table 11-1. Summary of processor mode, execution privilege level, and stack use options

Privilege Level for
Processor Mode | Used to Execute Software Execution Stack Used
Thread Applications Privileged or unprivileged ¥ Main stack or process stack™®
Handler Exception handlers Always privileged Main stack

Note: 1. See “CONTROL Register”.

44 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.3 Core Registers

Figure 11-2. Processor Core Registers
RN

—
RO
R1
R2
R3
Low registers
R4
R5
R6 General-purpose registers
R7
>_
R8
R9
High registers R10
R11
R12
) N— —
Stack Pointer SP (R13) PsP* || wmsP* *Banked version of SP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program status register
PRIMASK
FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register
Table 11-2. Core Processor Registers
Required
Register Name Access® Privilege® Reset
General-purpose registers RO-R12 Read-write Either Unknown
Stack Pointer MSP Read-write Privileged See description
Stack Pointer PSP Read-write Either Unknown
Link Register LR Read-write Either OXFFFFFFFF
Program Counter PC Read-write Either See description
Program Status Register PSR Read-write Privileged 0x01000000
Application Program Status Register APSR Read-write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read-write Privileged 0x00000000
Fault Mask Register FAULTMASK Read-write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read-write Privileged 0x00000000
CONTROL register CONTROL Read-write Privileged 0x00000000

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.

SAMANS/SAMAN16 [DATASHEET 45
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.4 General-purpose Registers
RO-R12 are 32-bit general-purpose registers for data operations.

11.4.1.5 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer
to use:

e 0= Main Stack Pointer (MSP). This is the reset value.

e 1= Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

11.4.1.6 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and
exceptions. On reset, the processor loads the LR value OXFFFFFFFF.

11.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the
EPSR T-bit at reset and must be 1.

46 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.8 Program Status Register

Name: PSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N | Z | C \Y | Q | ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:
e Application Program Status Register (APSR)
e Interrupt Program Status Register (IPSR)
e Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR.
The PSR register accesses these registers individually or as a combination of any two or all three registers, using the reg-
ister name as an argument to the MSR or MRS instructions. For example:
e Read of all the registers using PSR with the MRS instruction
e Write tothe APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read-write®® APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read-write™ APSR and IPSR
EAPSR | Read-write®® APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

SAMANS/SAMAN16 [DATASHEET 47
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.9 Application Program Status Register

Name: APSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

I N I z I S v I Q I - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

* N: Negative Flag
0: Operation result was positive, zero, greater than, or equal
1: Operation result was negative or less than.

e Z: Zero Flag
0: Operation result was not zero
1: Operation result was zero.

e C: Carry or Borrow Flag

Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

* V: Overflow Flag
0: Operation did not result in an overflow
1: Operation resulted in an overflow.

¢ Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

* GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

48 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

45 = IRQ29

See “Exception Types” for more information.

SAMANS/SAMAN16 [DATASHEET 49
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIUIT - |

7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interrupt-
ible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to
write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR
value in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return”

* ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH,
or VPOP instruction, the processor:
— Stops the load multiple or store multiple instruction operation temporarily
— Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:
— Returns to the register pointed to by bits[15:12]
— Resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e [T: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional.
The conditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more
information.

e T: Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:
— Instructions BLX, BX and POP{PC}
— Restoration from the stacked xPSR value on an exception return
— Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

50 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.12 Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they

might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. See “MRS” , “MSR” , and “CPS” for more information.

11.4.1.13 Priority Mask Register

Name: PRIMASK
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

« PRIMASK
0: No effect

1: Prevents the activation of all exceptions with a configurable priority.

Atmel

SAM4N8/SAM4AN16 [DATASHEET] 51

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.14 Fault Mask Register

Name: FAULTMASK
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

*+ FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

52 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.15 Base Priority Mask Register

Name: BASEPRI
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it
prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

e BASEPRI

Priority mask bits:

0x0000 = No effect.

Nonzero = Defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this
field, bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that
higher priority field values correspond to lower exception priorities.

SAMANS/SAMAN16 [DATASHEET 53
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.16 CONTROL Register

Name: CONTROL
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | - | SPSEL | nPRIV |

The CONTROL register controls the stack used and the privilege level for software execution when the processor is in
Thread mode.

» SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception
return.

e nPRIV: Thread Mode Privilege Level

Defines the Thread mode privilege level:

0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CON-

TROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register based
on the EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and
exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:
» Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or
* Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 11-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction. This ensures
that instructions after the ISB execute using the new stack pointer. See “ISB” .

54 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry”
and “Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more
information.

11.4.1.18 Data Types

The processor supports the following data types:
e 32-bit words
e 16-bit halfwords
e 8-bit bytes
e The processor manages all data memory accesses as little-endian. Instruction memory and Private

Peripheral Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for
more information.

11.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
— Access peripheral registers
— Define exception vectors
e The names of:
— The registers of the core peripherals
— The core exception vectors
e A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand the
CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural
short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 11.5.3 “Power Management Programming Hints”
e Section 11.6.2 “CMSIS Functions”

e Section 11.8.2.1 “NVIC Programming Hints”.

SAMANS/SAMAN16 [DATASHEET 55
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding
features. The processor has a fixed memory map that provides up to 4GB of addressable memory.

Figure 11-3. Memory Map

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
Prlvatebpuesrlpheral 1.0MB
0xE000 0000
Ox DFFFFFFF
External device 1.0GB
0xA0000000
OX9FFFFFFF
Ox43FEFEEF External RAM 1.0GB
32 MB Bit band alias
42 0x60000000
0x42000000 OXSFFFFFFF
OXA00FFEEF e Peripheral 0.5GB
it Band region
0x40000000 0x40000000
0x23FFFFFF OxSFFFFFFE
32 MB Bit band alias SRAM 0.568
0x20000000
0x22000000 OX1FFFFFFF
Code 0.5GB
Ox200FFFFF | 1MBBitBandregion |
0x20000000 9 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit
data, see “Bit-banding” .

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product,
refer to the Memories section of the datasheet.

56 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

Memory Types
e Normal
The processor can re-order transactions for efficiency, or perform speculative reads.
e Device

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered
memory.

Strongly-ordered

The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

Shareable

For a shareable memory region, the memory system provides data synchronization between bus masters in
a system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, the software must ensure data
coherency between the bus masters.

Execute Never (XN)

Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

11.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not
guarantee that the order in which the accesses complete matches the program order of the instructions, providing
this does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on
two memory accesses completing in program order, the software must insert a memory barrier instruction between
the memory access instructions, see “Software Ordering of Memory Accesses” .

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered
memory. For two memory access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of
the memory accesses is described below.

Table 11-3. Ordering of the Memory Accesses Caused by Two Instructions
A2 Device Access
v Strongly-ordered
Al Normal Access | Non-shareable Shareable Access

Normal Access - - - -

Device access, non-shareable - < - <

Device access, shareable - — < <

Strongly-ordered access - < < <
Where:

<

Atmel

Means that the memory system does not guarantee the ordering of the accesses.

Means that accesses are observed in program order, that is, Al is always observed
before A2.

SAM4N8/SAM4AN16 [DATASHEET] 57

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.2.3 Behavior of Memory Accesses

The behavior of accesses to each region in the memory map is:

Table 11-4. Memory Access Behavior

Memory
Address Range Memory Region Type XN | Description
0x00000000 - OXLFFEEFEE | Code Normal® | - Executable region for program code. Data can also be

put here.

Executable region for data. Code can also be put here.
0x20000000 - OX3FFFFFFF | SRAM Normal® | - This region includes bit band and bit band alias areas,
see Table 11-6.

This region includes bit band and bit band alias areas,

0x40000000 - OX5FFFFFFF | Peripheral Device® | XN see Table 11-6.

0x60000000 - OX9FFFFFFF External RAM Normal® | - Executable region for data.

0xA0000000 - OXDFFFFFFF | External device Device®™ | XN | External Device memory

0XE0000000 - OXEOOFFFFF | Private Peripheral Bus g:;%r:gg’[l) XN Z;‘;ferzg;%%tigcl'g%ﬁ_the NVIC, System timer, and
0XE0100000 - OXFFFFFFFF | Reserved Device” | XN | Reserved

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs
always use the Code region. This is because the processor has separate buses that enable instruction fetches and
data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
“Memory Protection Unit (MPU)” .

Additional Memory Access Constraints For Shared Memory

When a system includes shared memory, some memory regions have additional access constraints, and some
regions are subdivided, as Table 11-5 shows:

Table 11-5. Memory Region Shareability Policies

Address Range Memory Region Memory Type Shareability
0x00000000- Ox1FFFFFFF | Code Normal® - @
0x20000000- OX3FFFFFFF | SRAM Normal® - @)
0x40000000- OXSFFFFFFF | Peripheral Device™® -
0x60000000- OX7FFFFFFF WBWA @)
External RAM Normal® -
0x80000000- OX9FFFFFFF wT®
0xA0000000- OXBFFFFFFF Shareable™
External device Device® -
0xC0000000- OXDFFFFFFF Non-shareable ™
0XE0000000- OXEOOFFFFF | Private Peripheral Bus Strongly- ordered® | Shareable® -
0xE0100000- OXFFFFFFFF | Vendor-specific device Device™® - -

Notes: 1. See “Memory Regions, Types and Attributes” for more information.

2. WT = Write through, no write allocate. WBWA = Write back, write allocate. See the “Glossary” for more
information.

58 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:
e Prefetches instructions ahead of execution
e Speculatively prefetches from branch target addresses.

11.4.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

e The processor has multiple bus interfaces

e Memory or devices in the memory map have different wait states

e Some memory accesses are huffered or speculative.
“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the
order of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include

memory barrier instructions to force that ordering. The processor provides the following memory barrier
instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before
subsequent memory transactions. See “DMB” .

DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete
before subsequent instructions execute. See “DSB” .

ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB” .

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions
11.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band
regions occupy the lowest 1 MB of the SRAM and peripheral memory regions.
The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 11-6.

e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in
Table 11-7.

Table 11-6. SRAM Memory Bit-banding Regions

Address Range | Memory Region Instruction and Data Accesses
0x20000000- i i
SRAM bit-band region Direct accesses .to th|§ memory range behave as SRAM memory
Ox200FEFEE accesses, but this region is also bit-addressable through bit-band alias.
0x22000000- _ _ Data accesses to this region are ren_lappe_d to bit-bar_1d region. A write
SRAM bit-band alias operation is performed as read-modify-write. Instruction accesses are not
0x23FFFFFF remapped.

SAMANS/SAMAN16 [DATASHEET 59
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 11-7. Peripheral Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses
0x40000000- i i i
Peripheral bit-band alias Direct accesses .to thl_s memory range behave as perlphergl memory
O0x400FFFFE accesses, but this region is also bit-addressable through bit-band alias.
0x42000000- . . . Data accesses to this region are remappgd to bit-bapd region. A write
Peripheral bit-band region operation is performed as read-modify-write. Instruction accesses are
Ox43FFFFFF not permitted.

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-
band region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer size
of the instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:
bit_word_offset = (byte offset x 32) + (bit_nunber x 4)
bit_word_addr = bit_band_base + bit_word_offset

where:
e Bit_word_of fset is the position of the target bit in the bit-band memory region.
Bit _word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bi t _band_base is the starting address of the alias region.
Byt e_of f set is the number of the byte in the bit-band region that contains the targeted bit.
Bi t _nunber is the bit position, 0-7, of the targeted bit.

Figure 11-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-
band region:
e The alias word at 0x23FFFFEO maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEQ = 0x22000000 +
(OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC = 0x22000000 +
(OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 +
(0*32) + (0 *4).
e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000+
(0*32) + (7*4).

60 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 11-4. Bit-band Mapping

32 MB alias region

| oxesFrrFFC | oxesFFFFFs || Ox23FFFFF 4 | O0x23FFFFF 0 | Ox23FFFFEC | Ox23FFFFES | Ox23FFFFE4 | 0x23FFFFEO |

o o o

I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x2200000C 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

‘76543210’765432107654321076543210

T T T T 1
0x200FFFFF 0x200FFFFE 0x200FFFFD 0x200FFFFC
I — I — I — I —

765432107654321076543210‘76543210’

| | | I | | ! | | I | |
0x20000003 0x20000002 0x20000001 0x20000000
| | | | | | | | | | | |

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-

band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to O
writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF.
Writing 0x00 has the same effect as writing OxOE.

Reading a word in the alias region:
e 0x00000000 indicates that the targeted bit in the bit-band region is set to 0

e (0x00000001 indicates that the targeted bit in the bit-band region is set to 1
Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band
regions.

11.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,
bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. “Little-endian Format” describes
how words of data are stored in memory.

Figure 11-5.
Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and
the most significant byte at the highest-numbered byte. For example:

SAMANS/SAMAN16 [DATASHEET 61
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 11-6. Little-endian Format
Memory Register
7 0

31 2423 1615 8 7 0

Address A BO |Isbyte B3 B2 B1 BO
A+1 B1
A+2 B2

A+3 B3 | msbyte

11.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking
mechanism that a thread or process can use to obtain exclusive access to a memory location. The software can
use them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:

e 0:ltindicates that the thread or process gained exclusive access to the memory, and the write succeeds,

e 1:Itindicates that the thread or process did not gain exclusive access to the memory, and no write is

performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

e The word instructions LDREX and STREX

e The halfword instructions LDREXH and STREXH

e The byte instructions LDREXB and STREXB.

The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:
1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location
4. Test the returned status bit. If this bit is:

0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The
software must retry the read-modify-write sequence.
The software can use the synchronization primitives to implement a semaphore as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore
address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the
software has claimed the semaphore. However, if the Store-Exclusive instruction failed, another process
might have claimed the semaphore after the software performed the first step.

62 SAM4N8/SAM4AN16 [DATASHEET)] /ltmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.
The processor removes its exclusive access tag if:
e It executes a CLREX instruction
e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
e An exception occurs. This means that the processor can resolve semaphore conflicts between different
threads.
In a multiprocessor implementation:
e Executing a CLREX instruction removes only the local exclusive access tag for the processor
e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all
global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX”" .

11.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for
generation of these instructions:

Table 11-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t __ LDREXW (uint32_t *addr)

LDREXH uintl6_t _ LDREXH (uint16_t *addr)

LDREXB uint8_t __ LDREXB (uint8_t *addr)

STREX uint32_t __ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t __ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __ CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:
__ldrex((vol atile char *) OxFF);

SAMANS/SAMAN16 [DATASHEET 63
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.3 Exception Model

This section describes the exception model.

11.4.3.1 Exception States

Each exception is in one of the following states:
Inactive

The exception is not active and not pending.
Pending

The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to
pending.

Active

An exception is being serviced by the processor but has not completed.
An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in
the active state.

Active and Pending

The exception is being serviced by the processor and there is a pending exception from the same source.

11.4.3.2 Exception Types

The exception types are:
Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception.
When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset
is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest
priority exception other than reset. It is permanently enabled and has a fixed priority of -2.
NMIs cannot be:
e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.
Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU
or the fixed memory protection constraints determines this fault, for both instruction and data memory transactions.
This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is
disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

64 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:
An undefined instruction

An illegal unaligned access

An invalid state on instruction execution

e An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:
e An unaligned address on word and halfword memory access
e Adivision by zero.
SvcCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

PendSVv

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate
a SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)
A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are

asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the
processor.

SAMANS/SAMAN16 [DATASHEET 65
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 11-9. Properties of the Different Exception Types

Exception

Number® Irqg Number® | Exception Type Priority Vector Address or Offset® | Activation

1 - Reset -3, the highest | 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 Hard fault -1 0x0000000C -

4 12 mz:gzmem au | Configurable® | 0x00000010 Synchronous
Synchronous when

5 11 Bus fault Configurable® | 0x00000014 gg/(:zﬁ;onous when
imprecise

6 -10 Usage fault Configurable® | 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 svcall Configurable® | 0x0000002C Synchronous

12-13 - - - Reserved -

14 2 PendSV Configurable® | 0x00000038 Asynchronous

15 -1 SysTick Configurable® | 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurable® | 0x00000040 and above ® Asynchronous

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other
than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” .

See “Vector Table” for more information
See “System Handler Priority Registers”
See “Interrupt Priority Registers”
Increasing in steps of 4.

ok wDn

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.
Privileged software can disable the exceptions that Table 11-9 shows as having configurable priority, see:

e “System Handler Control and State Register”

e ‘“Interrupt Clear-enable Registers” .

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault
Handling” .

11.4.3.3 Exception Handlers

The processor handles exceptions using:

e Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ29 are the exceptions handled by ISRs.

e Fault Handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault
handlers.

e System Handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by
system handlers.

66 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 11-7 shows the order of the exception vectors in the vector table. The
least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 11-7. Vector Table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 SysTick
0x003C
14 -2 PendSVv
0x0038
13 Reserved
12 Reserved for Debug
1 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR
register to relocate the vector table start address to a different memory location, in the range 0x00000080 to
Ox3FFFFF80, see “Vector Table Offset Register” .

11.4.3.5 Exception Priorities

As Table 11-9 shows, all exceptions have an associated priority, with:
e A lower priority value indicating a higher priority
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.
If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0.

For information about configuring exception priorities see “System Handler Priority Registers” , and “Interrupt

Priority Registers” .

Note: Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and NMI exceptions, with
fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has
higher priority than IRQ[O0]. If both IRQ[1] and IRQI[0] are asserted, IRQ[1] is processed before IRQ[O].

SAMANS/SAMAN16 [DATASHEET 67
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

11.4.3.6 Interrupt Priority Grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each
interrupt priority register entry into two fields:
e An upper field that defines the group priority
e Alower field that defines a subpriority within the group.
Only the group priority determines preemption of interrupt exceptions. When the processor is executing an

interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not
preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they
are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the
lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application
Interrupt and Reset Control Register” .

11.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:
Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its
priority is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more
information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.
Return

This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced
e The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See “Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending
exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the
new exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous
exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved is the same for both exceptions.
Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the
first instruction of the exception handler of the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

68 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in
Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new
exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see
“Exception Mask Registers” . An exception with less priority than this is pending but is not handled by the
processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred as stacking and the structure of
eight data words is referred to as stack frame.

Figure 11-8. Exception Stack Frame

Pre-IR f stack
! {aligner} < | re-IRQ top of stac

FPSCR
S15
S14
S13
S12
S11
S10

S9
S8
S7
S6
S5
S4
S3
S2
S1 I ﬂ i Pre-IRQ top of stack
SO ! {aligner} 1«
xPSR Decreasing xPSR
PC memory PC
R address R
R12 R12
R3 R3
R2 A\ R2
R1 R1
RO -« IRQ top of stack RO « IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

SAMANS/SAMAN16 [DATASHEET 69
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

If no higher priority exception occurs during the exception entry, the processor starts executing the exception
handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

Exception Return
An Exception return occurs when the processor is in Handler mode and executes one of the following instructions
to load the EXC_RETURN value into the PC:
e An LDM or POP instruction that loads the PC
e An LDR instruction with the PC as the destination.
e A BX instruction using any register.
EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value
to detect when the processor has completed an exception handler. The lowest five bits of this value provide

information on the return stack and processor mode. Table 11-10 shows the EXC_RETURN values with a
description of the exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the
processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 11-10. Exception Return Behavior

EXC_RETURN[31:0] Description
AFFFFFFFL | Rem i eder e xcepton e uses o fostin st

11.4.3.8 Fault Handling
Faults are a subset of the exceptions, see “Exception Model” . The following generate a fault:
e Abus error on:
— Aninstruction fetch or vector table load
— Adata access
e Aninternally-detected error such as an undefined instruction
e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.
Fault Types
Table 11-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the

register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information
about the fault status registers.

70 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 11-11. Faults

Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register”
Fault escalated to a hard fault FORCED
MPU or default memory map mismatch: - -
on instruction access IACCVIOL
on data access Memory DACCVIOL®
: . . management “MMFSR: Memory Management Fault
during exception stacking fault MSTKERR Status Subregister”
during exception unstacking MUNSKERR
during lazy floating-point state preservation MLSPERR
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR
“BFSR: Bus Fault Status Subregister”
during lazy floating-point state preservation LSPERR
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state ™ INVSTATE
Usage fault “UFSR: Usage Fault Status Subregister”
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with
ICI continuation.

Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority
Registers” . The software can disable the execution of the handlers for these faults, see “System Handler Control
and State Register” .

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model” .

SAMANS/SAMAN16 [DATASHEET 71
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and
the fault is described as escalated to hard fault. Escalation to hard fault occurs when:

e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs
because a fault handler cannot preempt itself; it must have the same priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the
handler for the new fault cannot preempt the currently executing fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than the currently
executing exception.

e A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a

hard fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack
push for the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault
address register indicates the address accessed by the operation that caused the fault, as shown in Table 11-12.

Table 11-12. Fault Status and Fault Address Registers

Status Register | Address
Handler Name Register Name Register Description
Hard fault SCB_HFSR - “Hard Fault Status Register”
Memory “MMFSR: Memory Management Fault Status Subregister”
management fault MMFSR SCB_MMFAR “MemManage Fault Address Register”
“BFSR: Bus Fault Status Subregister”
Bus fault BFSR SCB_BFAR)
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until
either:

e ltisreset
e An NMI occurs
e ltis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup
state.

72 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.5 Power Management

The Cortex-M4 processor sleep modes reduce the power consumption:
e Sleep mode stops the processor clock
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register” .

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep
mode.

11.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.
Therefore, the software must be able to put the processor back into sleep mode after such an event. A program
might have an idle loop to put the processor back to sleep mode.

11.5.1.1 Wait for Interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a
WEFI instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

11.5.1.2 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception
handler, it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that
only require the processor to run when an exception occurs.

11.5.2 Wakeup from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

11.5.2.1 Wakeup from WFI or Sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception
entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an
interrupt arrives that is enabled and has a higher priority than the current exception priority, the processor wakes
up but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information
about PRIMASK and FAULTMASK, see “Exception Mask Registers” .

11.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI instructions. The CMSIS provides the following functions for these
instructions:
void _ W (void) // Wait for Interrupt

SAMANS/SAMAN16 [DATASHEET 73
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6 Cortex-M4 Instruction Set

11.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 11-13 lists the supported instructions.

e Angle brackets, <>, enclose alternative forms of the operand
Braces, {}, enclose optional operands
The Operands column is not exhaustive

Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 11-13. Cortex-M4 Instructions

Op2 is a flexible second operand that can be either a register or a constant

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C.V
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,CV
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #Isb, #width Bit Field Clear -

BFI Rd, Rn, #lsb, #width Bit Field Insert -

BIC, BICS {Rd.,} Rn, Op2 Bit Clear N,z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -

CBNz Rn, label Compare and Branch if Non Zero -

cBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,CV
CMP Rn, Op2 Compare N,Z,C\V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

74 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

Table 11-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{1}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,Z,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,zZ,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,z,C
NOP - No Operation -
ORN, ORNS {Rd.} Rn, Op2 Logical OR NOT N,z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd.,} Rn, Rm Saturating Add Q
QDsuUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QSuB {Rd,} Rn, Rm Saturating Subtract Q

Atmel

SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

75

Table 11-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
QSuUB16 {Rd.,} Rn, Rm Saturating Subtract 16 -
QSuUBS8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,zZ,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C\V
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C\V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -
SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS8 {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
gmtﬁ'?BB: SS,\'\//IIII_‘:_II_B_I-_F Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁt_?s Ssl\l\//llll__ﬁll__?'l-'r RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual
SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

76 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

Table 11-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
gmgt_?g SSI\,\//IIIEJJII__'I?': {Rd,} Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
STM Rn{1}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{'}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -
TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Atmel

SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

77

Table 11-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract -
ubDIV {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm g:_sbiig:r;:gul\lilultiply Accumulate Accumulate Long (32 x 32 + 32 +32), |
UMLAL RdLo, RdHi, Rn, Rm tégs)i(gggci'\gz;t’i%'i’_‘giitt?ezﬁﬁum“'ate ;
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd.,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSUBS {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS8 {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
uUsuBS8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd.,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP.E32 Sd, <Sm | #0.0> ;:r?gwf;f two floating-point registers, or one floating-point register EPSCR
vowPEFsz | sd<smimos | COEES e fostngpont egstrs, oo foaing ot e0SEr | ppcr
78 SAMANS/SAMAN16 [DATASHEET] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Table 11-13. Cortex-M4 Instructions (Continued)

Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Mnemonic Operands Description Flags
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -
VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFEMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{!}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate -
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C\V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{'}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -

WFI - Wait For Interrupt -

SAM4ANS/SAMAN16 [DATASHEET] 79

11.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler
does not support an appropriate intrinsic function, the user might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly
access:

Table 11-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIE F void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV(void)

WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR
instructions:

Table 11-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access | CMSIS Function
Read uint32_t _ get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __ get FAULTMASK (void)
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get. CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get MSP (void)
MSP
Write void __set_ MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP
Write void __set_PSP (uint32_t TopOfProcStack)

80 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.3 Instruction Descriptions

11.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand” .

11.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands
or destination register can be used. See instruction descriptions for more information.

Note: Bit[O] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct execution,
because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb instructions.

11.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand?2 in the
descriptions of the syntax of each instruction.
Operand?2 can be a:
e “Constant”
e “Register with Optional Shift”
Constant

Specify an Operand?2 constant in the form:
#const ant
where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
e Any constant of the form 0x00XYO00XY
e Any constant of the form 0xXY00XY00
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.
In addition, in a small number of instructions, constant can take a wider range of values. These are described in
the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other
constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant
that is not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the
equivalent instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:

Rm{, shift}
where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:

SAMANS/SAMAN16 [DATASHEET 81
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

ASR #n arithmetic shift right n bits, 1 < n < 32.
LSL #n logical shift left n bits, 1 <n < 31.
LSR #n logical shift right n bits, 1 < n < 32.
ROR #n rotate right n bits, 1 <n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the
instruction. However, the contents in the register Rm remains unchanged. Specifying a register with shift also
updates the carry flag when used with certain instructions. For information on the shift operations and how they
affect the carry flag, see “Flexible Second Operand”

11.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length.
Register shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
e During the calculation of Operand2 by the instructions that specify the second operand as a register with
shift. See “Flexible Second Operand” . The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs.
Register shift operations update the carry flag except when the specified shift length is 0. The following sub-
sections describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is the
register containing the value to be shifted, and n is the shift length.

ASR
Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the

right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the
result. See Figure 11-9.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded
towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 11-9. ASR#3
Carry

ERER: i

31 AEES Sﬁ;; D

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-
hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 11-10.

82 SAM4N8/SAM4AN16 [DATASHEET)] /ltmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is regarded as an
unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.
Figure 11-10. LSR #3

[Carry
000 Flag
vVVYy

31 [5&;—; D

LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 11-11.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two’'s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-
n], of the register Rm. These instructions do not affect the carry flag when used with LSL #O.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 11-11. LSL #3

« O —

31 514(3

o 1 L =Sl

N leo—
o leo—

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See
Figure 11-12.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register
Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated
to bit[31] of Rm.

e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

SAMANS/SAMAN16 [DATASHEET 83
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 11-12. ROR #3

Carry

3 || e

31 AEES Sﬁ;; D

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into
bit[31] of the result. See Figure 11-13.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.
Figure 11-13. RRX

Carry
Flag

31|30 110

fFLHTS L

11.6.3.5 Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.
The Cortex-M4 processor supports unaligned access only for the following instructions:

e LDR,LDRT

e L|LDRH, LDRHT

e LDRSH, LDRSHT

e STR, STRT

e STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and
therefore their accesses must be address-aligned. For more information about usage faults, see “Fault Handling” .

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not
support unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned.
To avoid accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control
Register to trap all unaligned accesses, see “Configuration and Control Register” .

11.6.3.6 PC-relative Expressions

84

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the
required offset from the label and the address of the current instruction. If the offset is too big, the assembler
produces an error.

e For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

e For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

11.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation, see “Application Program Status Register” . Some
instructions update all flags, and some only update a subset. If a flag is not updated, the original value is
preserved. See the instruction descriptions for the flags they affect.
An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags

e After any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code suffixes to
instructions. See Table 11-16 for a list of the suffixes to add to instructions to make them conditional instructions.

The condition code suffix enables the processor to test a condition based on the flags. If the condition test of a
conditional instruction fails, the instruction:

e Does not execute
e Does not write any value to its destination register
e Does not affect any of the flags
e Does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for

more information and restrictions when using the IT instruction. Depending on the vendor, the assembler might
automatically insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.

This section describes:
e “Condition Flags”
e “Condition Code Suffixes” .
Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

\Y, Set to 1 when the operation caused overflow, cleared to O otherwise.

For more information about the APSR, see “Program Status Register” .

A carry occurs:

e If the result of an addition is greater than or equal to 232

e If the result of a subtraction is positive or zero

e Asthe result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation
been performed at infinite precision, for example:

e |[f adding two negative values results in a positive value

e If adding two positive values results in a negative value

e |If subtracting a positive value from a negative value generates a positive value

e If subtracting a negative value from a positive value generates a negative value.

SAMANS/SAMAN16 [DATASHEET 85
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is
discarded. See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if
the condition code flags in the APSR meet the specified condition. Table 11-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.
Table 11-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 11-16. Condition Code Suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

I(-|:§ or c=1 Higher or same, unsigned >
Eg or Cc=0 Lower, unsigned <

MI N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VvC V=0 No overflow

HI C=1andZ=0 Higher, unsigned >

LS C=0or Z2=1 Lower or same, unsigned <

GE N=V Greater than or equal, sighed >
LT N!I=V Less than, signed <

GT Z=0andN=V Greater than, signed >

LE Z=1landN!=V Less than or equal, signed <
AL Can have any value | Always. This is the default when no suffix is specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO =

ABS(R1).
MOVS RO, R1 ; RO = Rl, setting flags
I T M ; I Tinstruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is
greater than R1 and R2 is greater than R3.

cwpP RO, R1 ; Conmpare RO and R1, setting flags

ITT GT ; I Tinstruction for the two GI conditions

CVPGT R2, R3 ; If '"greater than', conpare R2 and R3, setting flags
MOVGT R4, RS ; If still "greater than', do R4 = RS

86 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, the user can force a specific
instruction size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix
forces a 16-bit instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the

requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an instruction or
literal data, as in the case of branch instructions. This is because the assembler might not automatically generate the
right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any.

The example below shows instructions with the instruction width suffix.

BCS. W | abel ; creates a 32-bit instruction even for a short
; branch
ADDS. WRO, RO, Rl ; creates a 32-bit instruction even though the sane
operation can be done by a 16-bit instruction

SAM4N8/SAM4AN16 [DATASHEET] 87

A t | I leL Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4 Memory Access Instructions

88

The table below shows the memory access instructions:

Table 11-17. Memory Access Instructions
Mnemonic Description
ADR Load PC-relative address
CLREX Clear Exclusive
LDM{mode} Load Multiple registers
LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX{type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive

SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

11.6.4.1 ADR
Load PC-relative address.

Syntax

ADR{ cond} Rd, | abel
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
label is a PC-relative expression. See “PC-relative Expressions” .
Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination
register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated
is set to 1 for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not word-
aligned. See “Instruction Width Selection” .

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
ADR Rl, Text Message ; Wite address value of a location |abelled as
; Text Message to R1

SAMANS/SAMAN16 [DATASHEET 89
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} R, [Rn {, #offset}] ; i mredi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; imredi ate offset, two words
opD{cond} R, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} R, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!

Post-indexed Addressing
The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for

this mode is:
[Rn], #offset

90 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed
or unsigned. See “Address Alignment” .

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 11-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed byte

-255 to 4095 -255 to 255 -255 to 255

multiple of 4 in the multiple of 4 in the
Two words range -1020 to range -1020 to
1020 1020

multiple of 4 in the
range -1020 to 1020

Restrictions
For load instructions:

e Rtcan be SP or PC for word loads only

e Rt must be different from Rt2 for two-word loads

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution

e A branch occurs to the address created by changing bit[0] of the loaded value to 0

e If the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:

e Rtcan be SP for word stores only

e Rt mustnot be PC

e Rnmustnot be PC

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags
These instructions do not change the flags.

Examples
LDR R8, [R10] : Loads R8 fromthe address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 froma word
; 960 bytes above the address in R5, and
; increnents R5 by 960.
STR R2, [R9,#const-struc] ; const-struc is an expression eval uating
; to a constant in the range 0-4095.
STRH R3, [R4], #4 . Store R3 as halfword data into address in
; R4, then increnent R4 by 4
LDRD R8, R9, [R3, #0x20] ; Load R8 froma word 32 bytes above the

; address in R3, and load RO froma word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 : Store RO to address in R8, and store Rl to
; a wrd 4 bytes above the address in RS,
; and then decrenent R8 by 16.

SAMANS/SAMAN16 [DATASHEET 91
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.3 LDR and STR, Register Offset
Load and Store with register offset.

Syntax

op{type}{cond} R, [Rn, Rm{, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the
register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address Alignment” .

Restrictions

In these instructions:

Rn must not be PC

Rm must not be SP and must not be PC

Rt can be SP only for word loads and word stores
e Rtcan be PC only for word loads.

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
; sumof R5 and Rl

LDRSB RO, [R5, Rl, LSL #1] ; Read byte value froman address equal to

92 SAM4N8/SAM4AN16 [DATASHEET)] /ltmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

STR RO, [Rl, R2, LSL #2] ;

Atmel

sumof R5 and two tines R1, sign extended it
to a word value and put it in RO

Stores RO to an address equal to sumof Rl
and four tinmes R2

SAM4N8/SAM4AN16 [DATASHEET] 93

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.4 LDR and STR, Unprivileged
Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immedi ate of fset
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:

B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate
offset, see “LDR and STR, Immediate Offset” . The difference is that these instructions have only unprivileged
access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions

In these instructions:
e Rn must not be PC
e Rt must not be SP and must not be PC.

Condition Flags
These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivil eged access
LDRHT R2, [R2, #8] ; Load hal fword value froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

94 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.5 LDR, PC-relative
Load register from memory.

Syntax
LDR{type}{cond} Rt, | abel
LDRD{ cond} Rt, Rt2, |abel ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.
SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.

SH signed halfword, sign extend to 32 bits.
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions” .
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label
or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address Alignment” .

label must be within a limited range of the current instruction. The table below shows the possible offsets between
label and the PC.

Table 11-19. Offset Ranges

Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection” .
Restrictions

In these instructions:
e Rtcanbe SP or PC only for word loads
e Rt2 must not be SP and must not be PC
e Rt must be different from Rt2.

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e [f the instruction is conditional, it must be the last instruction in the IT block.

SAMANS/SAMAN16 [DATASHEET 95
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Condition Flags
These instructions do not change the flags.

Examples
LDR RO, LookUpTabl e ; Load RO with a word of data from an address
; labell ed as LookUpTabl e
LDRSB R7, |ocal data ; Load a byte value froman address | abelled
; as localdata, sign extend it to a word
; value, and put it in R7
96 SAMANS/SAMAN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.6 LDM

and STM

Load and Store Multiple registers.

Syntax

where

op

op{addr_node}{cond} Rn{!}, reglist
is one of:
LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

cond
Rn

reglist

1A Increment address After each access. This is the default.
DB Decrement address Before each access.
is an optional condition code, see “Conditional Execution” .
is the register on which the memory addresses are based.

is an optional writeback suffix.
If I'is present, the final address, that is loaded from or stored to, is written back into Rn.

is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” .

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMF

D is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the
highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4
* (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the
lowest number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 *
(n-1) is written back to Rn.

The P

USH and POP instructions can be expressed in this form. See “PUSH and POP” for details.

Restrictions

In these instructions:

Atmel

Rn must not be PC
reglist must not contain SP
In any STM instruction, reglist must not contain PC

SAM4N8/SAM4AN16 [DATASHEET] 97

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

e In any LDM instruction, reglist must not contain PC if it contains LR
e reglist must not contain Rn if the writeback suffix is specified.
When PC is in reglist in an LDM instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e [f the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags

These instructions do not change the flags.

Examples

LDM R8, { RO, R2, RO} ; LDMAis a synonymfor LDM
STVMDB R1!, {R3-R6, R11, R12}

Incorrect Examples

STM R5!, {R5, R4, RO} ; Value stored for R5 is unpredictable
LDM R2, {} ; There nust be at |east one register in the |ist

98 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15 A t I I IeL

11.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{ cond} regli st
POP{cond} regli st
where:
cond is an optional condition code, see “Conditional Execution” .
reglist is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based
on SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred
mnemonics in these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register
using the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions

In these instructions:
e reglist must not contain SP
e For the PUSH instruction, reglist must not contain PC
e For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
PUSH { RO, R4- R7}
PUSH {R2, LR}
POP { RO, R10, PC}
SAM4AN8/SAM4AN16 [DATASHEET 99
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.8 LDREX and STREX
Load and Store Register Exclusive.

Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{ cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{ cond} Rt, [Rn]
STREXH{ cond} Rd, Rt, [Rn]

where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.
Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.
The address used in any Store-Exclusive instruction must be the same as the address in the most recently
executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same
data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a
Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
“Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes O to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive
and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.
Restrictions

In these instructions:
e Donotuse PC
e Do notuse SP for Rd and Rt
e For STREX, Rd must be different from both Rt and Rn
e The value of offset must be a multiple of four in the range 0-1020.

Condition Flags
These instructions do not change the flags.

Examples
MoV R1, #0Ox1 ; Initialize the ‘lock taken' value try
LDREX RO, [LockAddr] ; Load the | ock val ue
cawP RO, #0 ; Is the lock free?

100 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

ITT EQ ; I'T instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock

CMPEQ RO, #0 ; Did this succeed?

BNE try ; No — try again

Yes — we have the | ock

SAMANS/SAMAN16 [DATASHEET 101
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.4.9 CLREX
Clear Exclusive.

Syntax
CLREX{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization Primitives” for more information.
Condition Flags
These instructions do not change the flags.

Examples
CLREX

102 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5 General Data Processing Instructions

The table below shows the data processing instructions:

Table 11-20. Data Processing Instructions

Mnemonic | Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLz Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword

REVSH Reverse byte order in bottom halfword and sign extend

ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange

SSAX Signed Subtract and Add with Exchange

SBC Subtract with Carry

SHADD16 | Signed Halving Add 16

SHADDS Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange

SHSAX Signed Halving Subtract and Add with Exchange

SHSUB16 | Signed Halving Subtract 16
Atmel

SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

103

Table 11-20. Data Processing Instructions (Continued)

Mnemonic | Description
SHSUBS8 Signed Halving Subtract 8
SSUB16 Signed Subtract 16

SSUBS8 Signed Subtract 8

SUB Subtract

SUBW Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADDS8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange
USAX Unsigned Subtract and Add with Exchange

UHADD16 | Unsigned Halving Add 16

UHADDS8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 | Unsigned Halving Subtract 16

UHSUBS Unsigned Halving Subtract 8

USADS8 Unsigned Sum of Absolute Differences
USADAS8 Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16
UsSuBS8 Unsigned Subtract 8
104 SAMANS/SAMAN16 [DATASHEET)] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #inml2 ; ADD and SUB only
where:
op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the first operand.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.
imm12 is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide
range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.

See also “ADR” .

Note: ~ ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax that uses
the imm12 operand.

Restrictions
In these instructions:
e Operand2 must not be SP and must not be PC
e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— Any shift in Operand2 must be limited to a maximum of 3 bits using LSL
e Rncanbe SP only in ADD and SUB
e Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— The user must not specify the S suffix
— Rm must not be PC and must not be SP

SAMANS/SAMAN16 [DATASHEET 105
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

— If the instruction is conditional, it must be the last instruction in the IT block

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:

— The user must not specify the S suffix
— The second operand must be a constant in the range 0 to 4095.

— Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to O0b00
before performing the calculation, making the base address for the calculation word-aligned.

— Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the
PC, because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags

If s is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if Cflag set and Z
ADCHI R11, RO, R3 ; flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit
integer contained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example
ADDS R4, RO, R2 ; add the | east significant words
ADC R5, R1, R3 ; add the nost significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a
96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the
result in R6, R9, and R2.

96-bit Subtraction Example

SUBS R6, R6, RO ; subtract the least significant words
SBCS R9, R2, R1 ; Subtract the middle words with carry
SBC R2, R8, Rl1 ; subtract the nost significant words with carry
106 SAMANS/SAMAN16 [DATASHEET] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn
and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand?2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If s is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples
AND R9, R2, #OxFFOO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BI C RO, R1, #Oxab
ORN R7, R11, R14, ROR #4

ORNS R7, R11l, R14, ASR #32

SAMANS/SAMAN16 [DATASHEET 107
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax
op{S}{cond} Rd, Rm Rs
op{S}{cond} Rd, Rm #n
RRX{ S} {cond} Rd, Rm

where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .

Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from O to 31
LSR shift length from 1 to 32
ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on
what result is generated by the different instructions, see “Shift Operations” .

Restrictions
Do not use SP and do not use PC.
Condition Flags
If s is specified:
e These instructions update the N and Z flags according to the result
e The C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” .

Examples
ASR R7, R8, #9 ; Arithnetic shift right by 9 bits
SLS Rl, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottombyte of R6
RRX R4, R5 ; Rotate right with extend.
108 SAMANS/SAMAN16 [DATASHEET] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.54 CLZ
Count Leading Zeros.

Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.

Examples
CLz R4, RO
CLZNE R2, R3

SAMANS/SAMAN16 [DATASHEET 109
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.5 CMP and CMN

110

Compare and Compare Negative.

Syntax
CwP{cond} Rn, Operand2
CWMN{ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result,
but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction,
except that the result is discarded.

Restrictions
In these instructions:
e Donotuse PC
e Operand2 must not be SP.
Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples
cwP R2, R9
CWN RO, #6400
CMPGT SP, R7, LSL #2

SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.6 MOV and MVN
Move and Move NOT.

Syntax
MOV{ S} {cond} Rd, Operand2
MOV{cond} Rd, #i nml6
MN{ S} {cond} Rd, Operand2

where:
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options
imm16 is any value in the range 0-65535.

Operation
The MOV instruction copies the value of Operand2 into Rd.
When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:
ASR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nifn!=0
LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
ROR{S}Hcond} Rd, Rm, #n is the preferred syntax for MOV{S}¥cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{SHcond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:
e MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{SH{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{SHcond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX" .

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and
places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:
e The second operand must be a register without shift
e The S suffix must not be specified.
When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX
instruction to branch for software portability to the ARM instruction set.

SAMANS/SAMAN16 [DATASHEET 111
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Condition Flags

If S is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples

MOVS R11, #0x000B ; Wite value of 0x000B to
R11, flags get updated

MOV R1, #0xFAQ05 ; Wite value of OxFAO5 to
R1, flags are not updated

MOVS R10, R12 ; Wite value in R12 to R10,
flags get updated

MOV R3, #23 ; Wite value of 23 to R3

MOV R8, SP ; Wite value of stack pointer to R8

M/NS R2, #OxF ; Wite value of OxFFFFFFFO (bitw se inverse of OxF)

; to the R2 and update fl ags.

112 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.7 MOVT
Move Top.
Syntax
MOVT{ cond} Rd, #i mi6
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
imm216 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MOVT R3, #O0xF123 ; Wite OxF123 to upper hal fword of R3, |ower hal fword
; and APSR are unchanged.

SAMANS/SAMAN16 [DATASHEET 113
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the operand.
Operation

Use these instructions to change endianness of data:
REV converts either:
e 32-bit big-endian data into little-endian data
e 32-bit little-endian data into big-endian data.
REV16 converts either:
e 16-bit big-endian data into little-endian data
e 16-bit little-endian data into big-endian data.
REVSH converts either:
e 16-bit signed big-endian data into 32-bit signed little-endian data
e 16-bit signed little-endian data into 32-bit signed big-endian data.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
REV R3, R7; Reverse byte order of value in R7 and wite it to R3
REV16 RO, RO; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5; Reverse Signed Hal fword
REVHS R3, R7; Reverse with Hi gher or Sane condition
RBIT R7, R8; Reverse bit order of value in R8 and wite the result to R7.

114 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.9 SADD16 and SADDS8
Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:

The SADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.

The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.

Writes the result in the corresponding bytes of the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 R1, RO ; Adds the halfwords in RO to the correspondi ng
; halfwords of RL and writes to correspondi ng hal fword
; of RIL.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and
; Wwites to the corresponding byte in R4.

SAMANS/SAMAN16 [DATASHEET 115
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SHADD16 Signed Halving Add 16.
SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHADDA6 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.

The SHADDBS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, RO ; Adds hal fwords in RO to correspondi ng hal fword of Rl
; and wites halved result to corresponding hal fword in
Rl

SHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; wites halved result to corresponding byte in R4.

116 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.11 SHASX and SHSAX
Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:
1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit
to the right causing a divide by two, or halving.

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit
to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom hal fword of R2
; and wites halved result to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R4 and wites halved result to bottom hal fword of R7

SHSAX RO, R3, R5 ; Subtracts bottom hal fword of R5 fromtop hal fword
; of R3 and wites halved result to top hal fword of RO
; Adds top hal fword of R5 to bottom hal fword of R3 and
; wites halved result to bottom hal fword of RO.

SAMANS/SAMAN16 [DATASHEET 117
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.12 SHSUB16 and SHSUBS8
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUBS Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:
The SHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halved halfword results in the destination register.

The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SHSUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword
; of RL and wites to correspondi ng hal fword of RL
SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,
; and wites to corresponding byte in R4.

118 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.13 SSUB16 and SSUBS8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand
2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
SSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; of RL and wites to corresponding hal fword of Rl
SSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in
; RO, and writes to correspondi ng byte of R4.

SAMANS/SAMAN16 [DATASHEET 119
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:
1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first
operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination register.

The SSAX instruction:
1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of R5 fromtop hal fword of R4
; and wites to bottom hal fword of RO

SSAX R7, R3, R2 ; Subtracts top hal fword of R2 from bottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top halfword of R3 with bottom hal fword of R2 and
; Wwites to top hal fword of R7.

120 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2
TEQ cond} Rn, Operand2

where
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options
Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the
result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the
same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1
and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2.
This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.

Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions:

e Update the N and Z flags according to the result

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.
Examples

TST RO, #Ox3F8 ; Perform bitwi se AND of RO value to Ox3F8,
; APSR is updated but result is discarded

TEQEQ R10, RO ; Conditionally test if value in RLO is equal to
; value in RO, APSR is updated but result is discarded.

SAMANS/SAMAN16 [DATASHEET 121
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.16 UADD16 and UADD8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The UADD16 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UADD16 R1, RO ; Adds hal fwords in RO to correspondi ng hal fword of R1,
; wites to corresponding hal fword of Rl
UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; Wwites to corresponding byte in R4.

122 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:
1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UASX RO, R4, R5 ; Adds top hal fword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of R5 fromtop hal fword of RO
; and wites to bottom hal fword of RO

USAX R7, R3, R2 ; Subtracts top halfword of R2 frombottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top halfword of R3 to bottom hal fword of R2 and
; Wwites to top hal fword of R7.

SAMANS/SAMAN16 [DATASHEET 123
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.18 UHADD16 and UHADDS8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UHADD16 Unsigned Halving Add 16.
UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the
destination register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.
The UHADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds hal fwords in R7 to correspondi ng hal fword of R3
; and wites halved result to corresponding hal fword
; in R

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; wites halved result to corresponding byte in R4.

124 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.19 UHASX and UHSAX
Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the addition to the top halfword of the destination register.
Subtracts the top halfword of the second operand from the bottom highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the division in the bottom halfword of the destination register.

The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the subtraction in the top halfword of the destination register.
Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
6. Writes the halfword result of the addition to the bottom halfword of the destination register.

ok~ N

a s DN

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2
; and wites halved result to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R7 and wites halved result to bottom hal fword of R7

UHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 fromtop hal fword of
; R3 and wites halved result to top hal fword of RO
; Adds top halfword of R5 to bottom hal fword of R3 and
; Wwites halved result to bottom hal fword of RO.

SAMANS/SAMAN16 [DATASHEET 125
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.20 UHSUB16 and UHSUBS8
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.
UHSUBS8 Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:
The UHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUBS instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHSUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword of
; RL and wites halved result to corresponding hal fword in Rl
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO and
; wites halved result to corresponding byte in R4.

126 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the
values of the GE flags.

Syntax
SEL{<c>}{<g>} {<Rd>} <Rn>, <RnP
where:
c, g are standard assembler syntax fields.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

The SEL instruction:
1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second
operand register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, R1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes fromR0O or R3, based on GE
SAMANS/SAMAN16 [DATASHEET 127
Atmel [.

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.22 USADS8
Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
USAD8 R1, R4, RO ; Subtracts each byte in RO from correspondi ng byte of R4
; adds the differences and wites to RL
USAD8 RO, R5 ; Subtracts bytes of R5 from correspondi ng byte in RO,
; adds the differences and wites to RO.

128 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.23 USADAS
Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm Ra
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
USADA8 R1, RO, R6 ; Subtracts bytes in RO from correspondi ng hal fword of Rl
: adds di fferences, adds value of R6, wites to Rl
USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO
: adds differences, adds value of R2 wites to R4.

SAMANS/SAMAN16 [DATASHEET 129
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.5.24 USUB16 and USUBS
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:
USUB16 Unsigned Subtract 16.
USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first operand
register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUBS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
USUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of Rl
; and wites to corresponding hal fword in RIUSUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in RO and
; wites to the corresponding byte in R4.

130 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions:

Table 11-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result

MLS Multiply and Subtract, 32-bit result

MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX Signed Multiply Accumulate Dual

SMLAL Signed Multiply with Accumulate (32x32+64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)

SMLALD, SMLALDX Signed Multiply Accumulate Long Dual

SMLAWIBIT] Signed Multiply Accumulate (word by halfword)

SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX Signed Dual Multiply Add

SMULIB,T] Signed Multiply (word by halfword)

SMMUL, SMMULR Signed Most Significant Word Multiply

SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT Signed Multiply (word by halfword)

SMUSD, SMUSDX Signed Dual Multiply Subtract

uDIv Unsigned Divide

UMAAL Unsigned Multiply Acpumulate Accumulate Long
(32x32+32+32), 64-bit result

UMLAL Unsigned Multiply with Accumulate (32x32+64), 64-bit result

UMULL Unsigned Multiply (32x32), 64-bit result

SAMANS/SAMAN16 [DATASHEET 131
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax
MUL{ S}{cond} {Rd,} Rn
MLA{ cond} Rd, Rn, Rm
M.S{cond} Rd, Rn, Rm

Rm; Miltiply
Ra ; Miultiply with accunul ate
Ra ; Miultiply with subtract

where:

cond is an optional condition code, see “Conditional Execution” .

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in
Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and
places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result
e Does not affect the C and V flags.

Examples
MJL R10, R2, RS ; Multiply, RLO = R2 x RS
M_A R10, R2, R1, R5 ; Multiply with accunulate, R1I0 = (R2 x Rl) + RS
MILS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MIULLT R2, R3, R2 ; Conditionally multiply, RR = R3 x R2
M.S R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

132 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.2 UMULL, UMAAL, UMLAL
Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold
the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.
The UMAAL instruction:
e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.
Restrictions
In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples

UMULL RO, R4, R5, R6 ; Multiplies R5 and R6, wites the top 32 bits to R4
; and the bottom 32 bits to RO

UMAAL R3, R6, R2, RY ; Miltiplies R2 and R7, adds R6, adds R3, wites the
; top 32 bits to R6, and the bottom 32 bits to R3

UMLAL R2, Rl, R3, R5 ; Miltiplies R5 and R3, adds R1: R2, wites to Rl: R2.

/ItmeL SAM4ANS/SAMAN16 [DATASHEET] 133
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax
op{ XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm Ra

where:
op is one of:
SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the
first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply
operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.
If Y is B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation
The SMALBB, SMLABT, SMLATB, SMLATT instructions:
e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
— The top signed halfword of Rm, T instruction suffix.
— The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No
overflow can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

134 SAM4N8/SAM4AN16 [DATASHEET)] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Examples

SMLABB R5, , R4, ; Multiplies bottom hal fwords of R6 and R4, adds
; RlL and wites to RS
; Multiplies top hal fword of R6 with bottom hal fword
; of R4, adds Rl and wites to RS
; Miultiplies top halfwords of R6 and R4, adds
; Rl and wites the sumto R5
; Multiplies bottomhal fword of R6 with top hal fword
; of R4, adds Rl and wites to RS
, R2 ; Multiplies bottomhal fword of R4 with top hal fword of
; R3, adds R2 and wites to R4
SM.AWB R10, R2, R5, R3 ; Miltiplies R2 with bottom hal fword of R5, adds
; RBtothe result and wites top 32-bits to R10
SMAW R10, R2, R1, R5 ; Miltiplies R2 with top hal fword of Rl, adds R5

; and wites top 32-bits to R10.

SMLATB RS, , R4,

R R R R

SMLABT RS,

R6

R6
SMLATT R5, R6, R4,

R6, R4,

R3

SMLABT R4,

SAMANS/SAMAN16 [DATASHEET 135
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.4 SMLAD
Signed Multiply Accumulate Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm Ra ;
where:
op is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.
X specifies which halfword of the source register Rn is used as the multiply
operand.
If X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register holding the values to be multiplied.
Rm the second operand register.
Ra is the accumulate value.
Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:
e If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the
bottom signed halfword values in Rn with the bottom signed halfword of Rm.
e Orif X is present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and
the bottom signed halfword values in Rn with the top signed halfword of Rm.
Add both multiplication results to the signed 32-bit value in Ra.
e Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

SMLAD RI10, R2, R, R5 ; Multiplies two halfword values in R2 with
; corresponding hal fwords in Rl, adds R5 and
; wites to R10

SMLALDX RO, R2, R4, R6 ; Miultiplies top halfword of R2 with bottom
; halfword of R4, nultiplies bottomhal fword of R2
; with top halfword of R4, adds R6 and wites to
;. RO.

136 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate
Long Dual.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
op{ XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdH , Rn, Rm

where:
op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).
X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:
If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.
If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.
SMLALD Signed Multiply Accumulate Long Dual.
SMLALDX Signed Multiply Accumulate Long Dual Reversed.
If the X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
The SMLAL instruction:
e Multiplies the two’s complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The non-specified halfwords of the source registers are ignored.
The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement
signed 16-bit integers. These instructions:
e If X is not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the
bottom signed halfword values of Rn with the bottom signed halfword of Rm.
e Orif X is present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and
the bottom signed halfword values of Rn with the top signed halfword of Rm.

SAMANS/SAMAN16 [DATASHEET 137
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

e Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit

product.

e Write the 64-bit product in RdLo and RdHi.

Restrictions
In these instructions:

e Do notuse SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SMLAL R4, R5, R3, R8
SMLALBT R2, R1, R6, R7
SMLALTB R2, R1, R6, RY

SMLALD R6, R8, R5, Rl

SMLALDX R6, R8, R5, R1

Miltiplies R3 and R8, adds R5: R4 and wites to
R5: R4

Mul tiplies bottomhal fword of R6 with top

hal fword of R7, sign extends to 32-bit, adds
R1:R2 and wites to RL: R2

Mil tiplies top halfword of R6 with bottom

hal fword of R7,sign extends to 32-bit, adds Rl:R2
and wites to RL: R2

Multiplies top halfwords in R5 and RL and bottom
hal fwords of R5 and R1l, adds R8:R6 and wites to
R8: R6

Miltiplies top halfword in R5 with bottom

hal fword of R1, and bottom hal fword of R5 with
top hal fword of Rl, adds R8:R6 and writes to

R8: R6.

138 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.6 SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm Ra
where:
op is one of:
SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Ra is the register holding the accumulate value.
Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the signed accumulate value to the result of the subtraction.
e Writes the result of the addition to the destination register.
The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:
e Optionally rotates the halfwords of the second operand.
Performs two signed 16 x 16-bit halfword multiplications.
Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
Condition Flags
This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.
For the Thumb instruction set, these instructions do not affect the condition code flags.

Examples
SMSD RO, R4, R5, R6 ; Miultiplies bottomhal fword of R4 with bottom
; halfword of R5, nultiplies top hal fword of R4

SAMANS/SAMAN16 [DATASHEET 139
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

; with top hal fword of R5, subtracts second from
; first, adds R6, wites to RO
SMLSDX R1, R3, R2, RO ; Miltiplies bottomhalfword of R3 with top
; halfword of R2, nultiplies top hal fword of R3
; With bottom hal fword of R2, subtracts second from
; first, adds RO, wites to Rl
SM.SLD R3, R6, R2, R7 ; Miultiplies bottomhal fword of R6 with bottom
; halfword of R2, nultiplies top hal fword of R6
; with top hal fword of R2, subtracts second from
; first, adds R6:R3, wites to R6:R3
SMLSLDX R3, R6, R2, R7 ; Miultiplies bottomhalfword of R6 with top
; halfword of R2, nultiplies top hal fword of R6
; wWith bottom hal fword of R2, subtracts second from
; first, adds R6:R3, wites to R6:R3.

140 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax

op{R}{cond} Rd, R, Rm Ra

where:

op

cond

Rd

Rn, Rm
Ra
Operation

is one of:

SMMLA Signed Most Significant Word Multiply Accumulate.

SMMLS Signed Most Significant Word Multiply Subtract.

If the X is omitted, the multiplications are bottom x bottom and top x top.

is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

is an optional condition code, see “Conditional Execution” .
is the destination register.

are registers holding the first and second multiply operands.
is the register holding the accumulate value.

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.

e Extracts the most significant 32 bits of the result.

e Adds the value of Ra to the signed extracted value.

e Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLS instruction:

e Multiplies the values in Rn and Rm.

Restrictions

Optionally rounds the result by adding 0x80000000.

Extracts the most significant 32 bits of the result.

Subtracts the extracted value of the result from the value in Ra.
Writes the result of the subtraction in Rd.

In these instructions:
e Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SWLA RO, R4, R5, R6 ; Miltiplies R4 and R5, extracts top 32 bits,

; R6, truncates and wites to RO

SWLAR R6, R2, R1, R4 ; Miltiplies R2 and Rl, extracts top 32 bits,

Atmel

; R4, rounds and wites to R6

adds

adds

SAM4N8/SAM4AN16 [DATASHEET] 141

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

SMMLSR R3, R6, R2, R7 ; Miltiplies R6 and R2, extracts top 32 bits,

subtracts R7, rounds and wites to R3

SMMLS R4, R5, R3, RB ; Miltiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and wites to R4.

142 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm

where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The
SMMUL instruction:

e Multiplies the values from Rn and Rm.
e Optionally rounds the result, otherwise truncates the result.
e Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:
e do not use SP and do not use PC.

Condition Flags
This instruction does not affect the condition code flags.

Examples
SMULL RO, R4, R5 ; Miltiplies R4 and R5, truncates top 32 bits
; and wites to RO
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and wites to R6.

SAMANS/SAMAN16 [DATASHEET 143
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm
where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.
The SMUSD instruction interprets the values from the first and second operands as two’s complement signed
integers. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

e Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
Sets the Q flag if the addition overflows. The multiplications cannot overflow.

Examples

SMUAD RO, R4, R5 ; Miltiplies bottomhal fword of R4 with the bottom
; hal fword of R5, adds nultiplication of top hal fword
; of RA with top halfword of R5, wites to RO

SMUADX R3, R7, R4 ; Miltiplies bottomhalfword of R7 with top hal fword
; of R4, adds multiplication of top hal fword of R7
: with bottomhal fword of R4, wites to R3

SMUSD R3, R6, R2 ; Miltiplies bottomhal fword of R4 with bottom hal fword
; of R6, subtracts multiplication of top halfword of R6
; Wwith top halfword of R3, wites to R3

SMUSDX R4, R5, R3 ; Miltiplies bottomhal fword of R5 with top hal fword of

144 SAM4N8/SAM4AN16 [DATASHEET)] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

; R3, subtracts nmultiplication of top hal fword of R5
; with bottomhal fword of R3, wites to R4.

SAMANS/SAMAN16 [DATASHEET 145
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.10 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword)
Syntax

op{ XY}{cond} Rd, Rn, Rm

op{Y}{cond} Rd. Rn, Rm
For SMULXY only:
op is one of;

SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot
tom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW({Y} Signed Multiply (word by halfword).
Y specifies which halfword of the source register Rm is used as the second mul
tiply operand.

If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed
16-bit integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

e Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Examples
SMULBT RO, R4, R5 ; Miltiplies the bottomhal fword of R4 with the
; top halfword of R5, nultiplies results and
; wites to RO
SMULBB RO, R4, R5 ; Miltiplies the bottomhal fword of R4 with the
; bottom hal fword of R5, nultiplies results and
; wites to RO

SMULTT RO, R4, R5 ; Miltiplies the top halfword of R4 with the top
; halfword of R5, nultiplies results and wites
; to RO

SMULTB RO, R4, R5 ; Miltiplies the top halfword of R4 with the

146 SAM4N8/SAM4AN16 [DATASHEET)] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

; bottom hal fword of R5, nultiplies results and
; and wites to RO

SMULWI R4, R5, R3 ; Miltiplies R5 with the top hal fword of R3,
; extracts top 32 bits and wites to R4
SMULV\B R4, R5, R3 ; Miltiplies R5 with the bottom hal fword of R3,

; extracts top 32 bits and wites to R4.

SAMANS/SAMAN16 [DATASHEET 147
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.11 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit

result.
Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:

UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accu
mulating value.

Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers,
adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result
back to RdHi and RdLo.

Restrictions
In these instructions:
e Do notuse SP and do not use PC
e RdHi and RdLo must be different registers.
Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4, R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

148 SAM4N8/SAM4AN16 [DATASHEET)] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax
SDI V{cond} {Rd,} Rn, Rm
uUDI V{cond} {Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.
Rm is a register holding the divisor.
Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SDIV RO, R, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/Rl
SAM4NS8/SAMAN16 [DATASHEET 149
Atmel [:

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.7 Saturating Instructions
The table below shows the saturating instructions:

Table 11-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSuB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSUB16 Unsigned Saturating Subtract 16

UQSuUBS Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:
e If the value to be saturated is less than -2"2, the result returned is -2"*
e If the value to be saturated is greater than 2" -1, the result returned is 2"*-1
e Otherwise, the result returned is the same as the value to be saturated.
For unsigned n-bit saturation, this means that:
e If the value to be saturated is less than 0, the result returned is 0
e Ifthe value to be saturated is greater than 2"-1, the result returned is 2"-1
e Otherwise, the result returned is the same as the value to be saturated.
If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the

instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the
MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

150 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax
op{cond} Rd, #n, Rm{, shift #s}
where:
op is one of;
SSAT Saturates a signed value to a signed range.
USAT Saturates a signed value to an unsigned range.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
n specifies the bit position to saturate to:

n ranges from 1
to 32 for SSAT

n ranges from 0 to 31 for USAT.

11.6.7.1 SSAT and USAT

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the
following:

ASR #s where s is in the range 1 to 31.

LSL #s where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2"* £ x £ 2"1-1.
The USAT instruction applies the specified shift, then saturates to the unsigned range 0 £ x £ 2"-1.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit val ue and
; wite it back to R7
USATNE RO, #7, RS ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and wite it to RO.

SAM4N8/SAM4AN16 [DATASHEET] 151

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

11.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of;
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two signed 16-bit halfwords to the destination register.
The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two unsigned halfwords in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT16 R7, #9, R2 ; Saturates the top and bottom hi ghwords of R2
; as 9-bit values, wites to correspondi ng hal fword
; of R7

USAT16NE RO, #13, R5 ; Conditionally saturates the top and bottom
; halfwords of R5 as 13-bit values, wites to
; correspondi ng hal fword of RO.

152 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
QADD Saturating 32-bit add.
QADDS8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUBS8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a
signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed
range -2"1 £ x £ 2"1-1, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the
QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit
and 16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds hal fwords of R4 with correspondi ng hal fword of
; R2, saturates to 16 bits and wites to
; correspondi ng hal fword of R7

QADD8 R3, R1, R6 ; Adds bytes of Rl to the correspondi ng bytes of R6,
; saturates to 8 bits and wites to correspondi ng
; byte of R3

QSUB16 R4, R2, R3 ; Subtracts hal fwords of R3 from corresponding
; hal fword of R2, saturates to 16 bits, wites to
; correspondi ng hal fword of R4

QsuBs R4, R2, R5 ; Subtracts bytes of R5 fromthe correspondi ng byte
; in R2, saturates to 8 bits, wites to corresponding
; byte of R4.

SAMANS/SAMAN16 [DATASHEET 153
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction:
1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —21° <x <215 -1,
where x equals 16, to the bottom halfword of the destination register.
4. Saturates the results of the sum and writes a 16-bit signed integer in the range
21 <x <21, where x equals 16, to the top halfword of the destination register.
The QSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.
3. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215 < x <215 _ 1, where x equals 16, to the bottom halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2%° < x < 2'° — 1, where
x equals 16, to the top halfword of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom hal fword of R2,
; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top highword of R2 from bottom hal fword of
; R4, saturates to 16 bits and wites to bottom hal fword
; of R7

SAX RO, R3, R5 ; Subtracts bottomhal fword of R5 fromtop hal fword of
; R3, saturates to 16 bits, wites to top halfword of RO
; Adds bottom hal fword of R3 to top hal fword of R5,
; saturates to 16 bits, wites to bottom hal fword of RO.

154 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.7.5 QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:
e Doubles the second operand value.
e Adds the result of the doubling to the signed saturated value in the first operand.
e Writes the result to the destination register.

The QDSUB instruction:
e Doubles the second operand value.
e Subtracts the doubled value from the signed saturated value in the first operand.
e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range —
231 < x < 2% 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions

Do not use SP and do not use PC.

Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples
QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, wites to R7
QDsuB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits

; fromR5, saturates to 32 bits, wites to RO.

SAMANS/SAMAN16 [DATASHEET 155
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.7.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax
op{cond} {Rd}, Rm Rn

where:
type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction;
1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0 <x< 2% -1, where x equals 16, to the top halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 26 — 1, where
X equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.
3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 2® — 1, where
x equals 16, to the top halfword of the destination register.
4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x < 26 — 1, where x
equals 16, to the bottom halfword of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the condition code flags.

Examples
UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2,
; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
. R4, saturates to 16 bits, wites to bottom hal fword of R7
UQSAX RO, R3, R5 ; Subtracts bottomhal fword of R5 fromtop hal fword of R3,
; saturates to 16 bits, wites to top hal fword of RO
; Adds bottom hal fword of R4 to top hal fword of R5
; saturates to 16 bits, wites to bottom hal fword of RO.

156 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:
UQADDS8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUBS8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the
destination register.
The UQADD16 instruction:
e Adds the respective top and bottom halfwords of the first and second operands.
e Saturates the result of the additions for each halfword in the destination register to the unsigned range
0 £ x £ 2'5-1, where x is 16.
The UQADDS instruction:
e Adds each respective byte of the first and second operands.
e Saturates the result of the addition for each byte in the destination register to the unsigned range 0 £ x £ 28-
1, where x is 8.
The UQSUBL16 instruction:
e Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
e Saturates the result of the differences in the destination register to the unsigned range 0 £ x £ 26-1, where x
is 16.
The UQSUBS instructions:
e Subtracts the respective bytes of the second operand from the respective bytes of the first operand.
e Saturates the results of the differences for each byte in the destination register to the unsigned range
0 £ x £ 28-1, where x is 8.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

Examples
UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding hal fword in R2,
; saturates to 16 bits, wites to corresponding hal fword of R7
UQADD8 R4, R2, R5 ; Adds bytes of R2 to corresponding byte of R5, saturates
; to 8 bits, wites to corresponding bytes of R4
u@EuBl6 R6, R3, RO ; Subtracts hal fwords in RO from correspondi ng hal fword

; in R3, saturates to 16 bits, wites to correspondi ng

SAMANS/SAMAN16 [DATASHEET 157
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

: halfword in R6
uQsuB8 R1, R5, R6 ; Subtracts bytes in R6 from correspondi ng byte of R5,
; saturates to 8 bits, wites to corresponding byte of RIl.

158 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.8 Packing and Unpacking Instructions
The table below shows the instructions that operate on packing and unpacking data:

Table 11-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add
SXTAB16 Dual extend 8 bits to 16 and add
SXTAH Extend 16 bits to 32 and add
SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add
SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add
UXTAB16 Dual extend 8 bits to 16 and add
UXTAH Extend 16 bits to 32 and add
UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add
UXTH Zero extend a halfword

SAMANS/SAMAN16 [DATASHEET 159
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax
op{cond} {Rd}, Rn, Rm{, LSL #i mi}
op{cond} {Rd}, Rn, Rm{, ASR #i mi

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register
Rm is the second operand register holding the value to be optionally shifted.
imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.
The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
PKHBT R3, R4, R5 LSL #0 ; Wites bottom hal fword of R4 to bottom hal fword of
; R3, wites top halfword of R5, unshifted, to top
: hal fword of R3
PKHTB R4, RO, R2 ASR #1 ; Wites R2 shifted right by 1 bit to bottom hal fword
; of R4, and wites top halfword of RO to top
; hal fword of R4.

160 SAM4N8/SAM4AN16 [DATASHEET)] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.8.2 SXT and UXT
Sign extend and Zero extend.

Syntax
op{cond} {Rd,} Rm{, ROR #n}
op{cond} {Rd}, Rm{, ROR #n}

where:
op is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.
— SXTB16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.
— UXTB16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.

Examples
SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom hal fword of
; of result, sign extends to 32 bits and wites to R4
UXTB R3, R10 ; Extracts | owest byte of value in R10, zero extends, and
c wites to R3.

SAMANS/SAMAN16 [DATASHEET 161
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

162

Syntax

op{cond} {Rd,}
op{cond} {Rd,}

where:

op

cond
Rd

Rn

Rm
ROR #n

Operation

Rn, Rm{, ROR #n}
Rn, Rm{, ROR #n}

is one of:
SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.

SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.

UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.

UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.

is an optional condition code, see “Conditional Execution” .
is the destination register.

is the first operand register.

is the register holding the value to rotate and extend.

is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits,

and extracts bits [23:16] from Rm and sign extends to 16 bits.

UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits,

and extracts bits [23:16] from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in

Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; hal fword, sign extends to 32 bits, adds
; R8,and wites to R4

UXTAB R3, R4, R10 ; Extracts bottom byte of RLO and zero extends
; to 32 bits, adds R4, and wites to R3.

SAMANS/SAMAN16 [DATASHEET 163
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 11-24. Packing and Unpacking Instructions

Mnemonic | Description
BFC Bit Field Clear
BFI Bit Field Insert
SBFX Signed Bit Field Extract
SXTB Sign extend a byte
SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte
UXTH Zero extend a halfword
164 SAMANS/SAMAN16 [DATASHEET)] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #wi dth
BFI {cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit
position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of RAto O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of RO with
; bit O0to bit 11 from R2.

SAMANS/SAMAN16 [DATASHEET 165
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #wi dth
UBFX{ cond} Rd, Rn, #lsb, #width
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.
Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination
register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) fromRl and sign
; extend to 32 bits and then wite the result to RO.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from Rl1l and zero
: extend to 32 bits and then wite the result to RS8.

166 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.9.3 SXT and UXT
Sign extend and Zero extend.

Syntax
SXText end{cond} {Rd,} Rm{, ROR #n}
UXText end{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower
; halfword of the result and then sign extend to
: 32 bits and wite the result to R4.

UXTB R3, R10 ; Extract |owest byte of the value in RLO and zero
; extend it, and wite the result to R3.

SAMANS/SAMAN16 [DATASHEET 167
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.10 Branch and Control Instructions

The table below shows the branch and control instructions:

Table 11-25. Branch and Control Instructions

Mnemonic | Description
B Branch
BL Branch with Link
BLX Branch indirect with Link
BX Branch indirect
CBNz Compare and Branch if Non Zero
CcBz Compare and Branch if Zero
IT If-Then
TBB Table Branch Byte
TBH Table Branch Halfword
168 SAMANS/SAMAN16 [DATASHEET)] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax
B{ cond} | abel
BL{cond} | abel
BX{cond} Rm
BLX{ cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional Execution” .
label is a PC-relative expression. See “PC-relative Expressions” .
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm
must be 1, but the address to branch to is created by changing bit[0] to O.
Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch
instructions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT" .

The table below shows the ranges for the various branch instructions.

Table 11-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MBto +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection” .

Restrictions

The restrictions are:
e Do not use PC in the BLX instruction
e For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address
created by changing bit[0] to O
e When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer
branch range when it is inside an IT block.

SAMANS/SAMAN16 [DATASHEET 169
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Condition Flags
These instructions do not change the flags.

Examples

B | oopA ; Branch to | oopA

BLE ng ; Conditionally branch to |abel ng

B. W target ; Branch to target within 16MB range

BEQ tar get ; Conditionally branch to target

BEQ W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address

; stored in LR

BX LR ; Return from function call

BXNE RO ; Conditionally branch to address stored in RO

BLX RO ; Branch with link and exchange (Call) to a address stored in RO.
170 SAMANS/SAMAN16 [DATASHEET)] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.10.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax
CBZ Rn, | abel
CBNZ Rn, | abel
where:
Rn is the register holding the operand.
label is the branch destination.
Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.
CBZ Rn, label does not change condition flags but is otherwise equivalent to:
CwvP Rn, #0
BEQ | abel
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BNE | abel

Restrictions

The restrictions are:
e Rn must be in the range of RO to R7
e The branch destination must be within 4 to 130 bytes after the instruction
e These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples
CcBz R5, target ; Forward branch if R5 is zero
CBNz RO, target ; Forward branch if RO is not zero

SAMANS/SAMAN16 [DATASHEET 171
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.10.3 IT

172

If-Then condition instruction.
Syntax
| T{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in
the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their
syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so
that the user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and
execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to
branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:
e T
e CBZand CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

e A branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:

— ADDPC, PC,Rm
— MOV PC,Rm
— B, BL,BX, BLX
— Any LDM, LDR, or POP instruction that writes to the PC
— TBBand TBH
e Do not branch to any instruction inside an IT block, except when returning from an exception handler

SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

e All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside
an IT block but has a larger branch range if it is inside one

e Each instruction inside the IT block must specify a condition code suffix that is either the same or logical
inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler
directives within them.

Condition Flags

This instruction does not change the flags.

Example
ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, RL ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional nove
cwp RO, #9 ; Convert RO hex value (0 to 15) into ASCl I
; ("0 -T9, A -TFY)
I TE Gr ; Next 2 instructions are conditional
ADDGT R1, RO, #55 ; Convert OxA ->'"A
ADDLE R1, RO, #48 ; Convert 0x0 -> '0'
1T GT ; 1T block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment Rl conditionally
ITTEE EQ ; Next 4 instructions are conditional
MOVEQ RO, RL ; Conditional nove
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE. W dl oop ; Branch instruction can only be used in the |ast
; instruction of an IT bl ock
1T NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT bl ock

SAMANS/SAMAN16 [DATASHEET 173
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.10.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax
TBB [Rn, Rn
TBH [Rn, Rm LSL #1]
where:
Rn is the register containing the address of the table of branch lengths.
If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.
Rm is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.
Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword
offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch
offset is twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the
unsigned value of the halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

Restrictions
The restrictions are:
e Rn must not be SP
e Rm must not be SP and must not be PC
e When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.

Condition Flags
These instructions do not change the flags.

Examples
ADR. W RO, BranchTabl e_Byte
TBB [RO, R1] ; RLis the index, RO is the base address of the
; branch table
Casel
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3

; an instruction sequence follows

BranchTabl e_Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; RLis the index, PCis used as base of the
; branch table
BranchTabl e_H

DCl ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCl ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCl ((CaseC - BranchTable_H)/2) ; CaseC offset calculation
CaseA
174 SAMANS/SAMAN16 [DATASHEET] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

;an instruction sequence follows
CaseB
;an instruction sequence foll ows
CaseC
an instruction sequence follows

SAM4N8/SAM4AN16 [DATASHEET] 175

A t ' I IeL Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11 Miscellaneous Instructions

The table below shows the remaining Cortex-M4 instructions:

Table 11-27. Miscellaneous Instructions

Mnemonic | Description
BKPT Breakpoint
CPSID Change Processor State, Disable Interrupts
CPSIE Change Processor State, Enable Interrupts
DMB Data Memory Barrier
DSB Data Synchronization Barrier
ISB Instruction Synchronization Barrier
MRS Move from special register to register
MSR Move from register to special register
NOP No Operation
SEV Send Event
SsvC Supervisor Call
WEFI Wait For Interrupt
176 SAMANS/SAMAN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.1 BKPT

Breakpoint.
Syntax
BKPT #i mm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags
This instruction does not change the flags.

Examples
BKPT OxAB ; Breakpoint with i medi ate val ue set to OxAB (debugger can
; extract the inmmediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to 0XAB for any purpose other
than Semi-hosting.

SAMANS/SAMAN16 [DATASHEET 177
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.2 CPS
Change Processor State.

Syntax
CPSef fect iflags
where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions

The restrictions are:
e Use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

Condition Flags
This instruction does not change the condition flags.

Examples

CPSIDi ; Disable interrupts and configurable fault handlers (set PRI MASK)
CPSIDf ; Disable interrupts and all fault handl ers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handlers (clear PRI MASK)

CPSIE f ; Enable interrupts and fault handl ers (cl ear FAULTMASK)

178 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.3 DMB
Data Memory Barrier.

Syntax
DVB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order,
after the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access
memory.

Condition Flags
This instruction does not change the flags.

Examples
DVMB ; Data Menory Barrier

SAMANS/SAMAN16 [DATASHEET 179
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.4 DSB
Data Synchronization Barrier.

Syntax
DSB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

Condition Flags
This instruction does not change the flags.

Examples
DSB ; Data Synchronisation Barrier

180 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.5 ISB

Instruction Synchronization Barrier.

Syntax
| SB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from memory again, after the ISB instruction has been completed.

Condition Flags
This instruction does not change the flags.

Examples
ISB ; Instruction Synchronisation Barrier

SAMANS/SAMAN16 [DATASHEET 181
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.6 MRS
Move the contents of a special register to a general-purpose register.

Syntax
MRS{cond} Rd, spec_reg
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to
clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These
operations use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.
Note: BASEPRI_MAX s an alias of BASEPRI when used with the MRS instruction.

See “‘MSR”.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
MRS RO, PRIMASK ; Read PRI MASK value and wite it to RO

182 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.7 MSR
Move the contents of a general-purpose register into the specified special register.
Syntax
MSR{ cond} spec_reg, Rn
where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR. See “Application Program Status Register” . Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is O
Rn is non-zero and less than the current BASEPRI value.

See ‘MRS”.

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples
MSR CONTROL, Rl ; Read Rl value and wite it to the CONTROL register

SAMANS/SAMAN16 [DATASHEET 183
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.8 NOP
No Operation.

Syntax
NOP{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition Flags
This instruction does not change the flags.

Examples
NOP ; No operation

184 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.9 SEV
Send Event.

Syntax
SEV{ cond}

where:
cond is an optional condition code, see “Conditional Execution” .
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It
also sets the local event register to 1, see “Power Management” .

Condition Flags
This instruction does not change the flags.

Examples
SEV ; Send Event

SAMANS/SAMAN16 [DATASHEET 185
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.10 SVC
Supervisor Call.

Syntax
SVC{ cond} #i mm
where:
cond is an optional condition code, see “Conditional Execution” .
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service
is being requested.

Condition Flags
This instruction does not change the flags.

Examples
SVC 0x32 ; Supervisor Call (SVC handler can extract the imediate val ue
; by locating it via the stacked PC)
186 SAMAN8/SAMAN16 [DATASHEET] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.6.11.11 WFI
Wait for Interrupt.

Syntax
WFI { cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:
e An exception

e A Debug Entry request, regardless of whether Debug is enabled.
Condition Flags
This instruction does not change the flags.

Examples
WFl ; Wait for interrupt

SAMANS/SAMAN16 [DATASHEET 187
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.7 Cortex-M4 Core Peripherals

11.7.1 Peripherals

e Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low
latency interrupt processing. See Section 11.8 “Nested Vectored Interrupt Controller (NVIC)”

e System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 11.9 “System Control Block (SCB)”

e System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System
(RTOS) tick timer or as a simple counter. See Section 11.10 “System Timer (SysTick)”

e Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different

memory regions. It provides up to eight different regions, and an optional predefined background region.
See Section 11.11 “Memory Protection Unit (MPU)”

11.7.2
Address Map

The address map of the Private peripheral bus (PPB) is:

Table 11-28. Core Peripheral Register Regions

Address Core Peripheral
0xEOOOE008-0xEOQOOEOOF System Control Block
OxEOOOE010-0xEOOOEO1F System Timer
OXEOOOE100-OXxEOOOE4EF Nested Vectored Interrupt Controller
OXEOOOEDO0-OXEOOOED3F System control block
0xXEOOOED90-0xEOOOEDBS Memory Protection Unit
OXEOOOEF00-0XxEOOOEF03 Nested Vectored Interrupt Controller

In register descriptions:
e The required privilege gives the privilege level required to access the register, as follows:
— Privileged: Only privileged software can access the register.
— Unprivileged: Both unprivileged and privileged software can access the register.

188 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8 Nested Vectored Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The NVIC supports:

1 to 30 interrupts.

A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower priority, so
level 0 is the highest interrupt priority.

Level detection of interrupt signals.

Dynamic reprioritization of interrupts.

Grouping of priority values into group priority and subpriority fields.
Interrupt tail-chaining.

An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

11.8.1 Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear
the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware
and Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the
processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR
again. This means that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

11.8.1.1 Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

The NVIC detects that the interrupt signal is HIGH and the interrupt is not active
The NVIC detects a rising edge on the interrupt signal

A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending
Registers”, or to the NVIC_STIR register to make an interrupt pending, see “Software Trigger Interrupt
Register” .

A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:

— For alevel-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to
inactive.

Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not
change. Otherwise, the state of the interrupt changes to inactive.

11.8.2 NVIC Design Hints and Tips

Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt.

Atmel

SAM4N8/SAM4AN16 [DATASHEET] 189

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector
table are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the
“Vector Table Offset Register” .

11.8.2.1 NVIC Programming Hints

The software uses the CPSIE | and CPSID | instructions to enable and disable the interrupts. The CMSIS provides
the following intrinsic functions for these instructions:

void __disable_irg(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts
In addition, the CMSIS provides a nhumber of functions for NVIC control, including:

Table 11-29. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnablelRQ(IRQnN_t IRQN) Enable IRQnN

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendinglRQ (IRQn_t IRQN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQnN) Set IRQn pending

void NVIC_ClearPendinglRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQnN) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.
To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:
e The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:
— The array ISER[0] corresponds to the registers ISERO
— The array ICER[0] corresponds to the registers ICERO
— The array ISPR[0] corresponds to the registers ISPRO
— The array ICPR[O]corresponds to the registers ICPRO
— The array IABR[O]corresponds to the registers IABRO
e The 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the array IP[0] to
IP[29] corresponds to the registers IPRO-IPR7, and the array entry IP[n] holds the interrupt priority for
interrupt n.
The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 11-30
shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables
that have one bit per interrupt.

Table 11-30. Mapping of Interrupts to the Interrupt Variables
CMSIS Array Elements™

Interrupts Set-enable Clear-enable Set-pending Clear-pending Active Bit
0-29 ISER[0] ICER[O] ISPRI[0] ICPR[O] IABRI[0]
Notes: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds to the ICERO
register.
190 SAMANS/SAMAN16 [DATASHEET
[] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 11-31. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

OxEOOOE100 Interrupt Set-enable Register 0 NVIC_ISERO Read-write 0x00000000
OxXEOOOE11C Interrupt Set-enable Register 7 NVIC_ISER7 Read-write 0x00000000
0XEOOOE180 Interrupt Clear-enable Register0 NVIC_ICERO Read-write 0x00000000
OXEOOOE19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read-write 0x00000000
0XEOO0E200 Interrupt Set-pending Register 0 NVIC_ISPRO Read-write 0x00000000
OXEOOOE21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read-write 0x00000000
0XEOOOE280 Interrupt Clear-pending Register 0 NVIC_ICPRO Read-write 0x00000000
OXEOOOE29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read-write 0x00000000
OXEOOOE300 Interrupt Active Bit Register O NVIC_IABRO Read-write 0x00000000
OXEOOOE31C Interrupt Active Bit Register 7 NVIC_IABR7 Read-write 0x00000000
OXEOOOE400 Interrupt Priority Register O NVIC_IPRO Read-write 0x00000000
OXEOOOE41C Interrupt Priority Register 7 NVIC_IPR7 Read-write 0x00000000
OxEOOOEF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

Atmel

SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

191

11.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERX [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETENA |
23 22 21 20 19 18 17 16

| SETENA |
15 14 13 12 11 10 9 8

| SETENA |
7 6 5 4 3 2 1 0

| SETENA |

These registers enable interrupts and show which interrupts are enabled.

» SETENA: Interrupt Set-enable
Write:

0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. If aninterrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never activates
the interrupt, regardless of its priority.

192 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERX [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRENA |
23 22 21 20 19 18 17 16

| CLRENA |
15 14 13 12 11 10 9 8

| CLRENA |
7 6 5 4 3 2 1 0

| CLRENA |

These registers disable interrupts, and show which interrupts are enabled.

* CLRENA: Interrupt Clear-enable
Write:

0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

SAMANS/SAMAN16 [DATASHEET 193
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

These registers force interrupts into the pending state, and show which interrupts are pending.

» SETPEND: Interrupt Set-pending
Write:

0: No effect.

1: Changes the interrupt state to pending.
Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Notes: 1. Writing 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.
2. Wiriting 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

194 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8.3.4 Interrupt Clear-pending Registers

Name: NVIC_ICPRXx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

These registers remove the pending state from interrupts, and show which interrupts are pending.

* CLRPEND: Interrupt Clear-pending

Write:

0: No effect.

1: Removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

SAMANS/SAMAN16 [DATASHEET 195
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRXx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

These registers indicate which interrupts are active.

» ACTIVE: Interrupt Active Flags
0: Interrupt is not active.

1: Interrupt is active.
Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

196 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI3 |
23 22 21 20 19 18 17 16

| PRI2 |
15 14 13 12 11 10 9 8

| PRI1 |
7 6 5 4 3 2 1 0

| PRIO |

The NVIC_IPRO-NVIC_IPRY7 registers provide a 4-bit priority field for each interrupt. These registers are byte-accessible.
Each register holds four priority fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[29]

* PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

* PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

* PRI1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

e PRIO: Priority (4m)
Priority, Byte Offset 0, refers to register bits [7:0].

Notes: 1. Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding interrupt. The
processor implements only bits[7:4] of each field; bits[3:0] read as zero and ignore writes.

2. for more information about the IP[0] to IP[29] interrupt priority array, that provides the software view of the interrupt priorities,
see Table 11-29, “CMSIS Functions for NVIC Control” .

3. The corresponding IPR number n is given by n = m DIV 4.
4. The byte offset of the required Priority field in this register is m MOD 4.

SAMANS/SAMAN16 [DATASHEET 197
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.8.3.7 Software Trigger Interrupt Register

Name: NVIC_STIR
Access: Write-only
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
- 1T - 1T - G - - D]
7 6 5 4 3 2 1 0
| INTID |
Write to this register to generate an interrupt from the software.
e INTID: Interrupt ID
Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.
198 SAMAN8/SAMAN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9

System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions.
Ensure that the software uses aligned accesses of the correct size to access the system control block registers:
e Except for the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it must use aligned word accesses
e Forthe SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it can use byte or aligned halfword or word
accesses.
The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:
1. Read and save the MMFAR or SCB_BFAR value.

2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The
SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might change the SCB_MMFAR
or SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault
might change the SCB_MMFAR or SCB_BFAR value.

SAMANS/SAMAN16 [DATASHEET 199
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1 System Control Block (SCB) User Interface

Table 11-32. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset
OxEOOOE008 Auxiliary Control Register SCB_ACTLR Read-write 0x00000000
OXEOOOEDOO CPUID Base Register SCB_CPUID Read-only 0x410FC240
OXEOOOEDO04 Interrupt Control and State Register SCB_ICSR Read-write™® 0x00000000
OxXEOOOEDO08 Vector Table Offset Register SCB_VTOR Read-write 0x00000000
OxXEOOOEDOC Application Interrupt and Reset Control Register SCB_AIRCR Read-write 0xFA050000
OxXEOOOED10 System Control Register SCB_SCR Read-write 0x00000000
OXEOOOED14 Configuration and Control Register SCB_CCR Read-write 0x00000200
OXEOOOED18 System Handler Priority Register 1 SCB_SHPR1 Read-write 0x00000000
OXEOOOED1C System Handler Priority Register 2 SCB_SHPR2 Read-write 0x00000000
OXEOOOED20 System Handler Priority Register 3 SCB_SHPR3 Read-write 0x00000000
OXEOOOED24 System Handler Control and State Register SCB_SHCSR Read-write 0x00000000
OxEOOOED28 Configurable Fault Status Register SCB_CFSR® Read-write 0x00000000
OXEOOOED2C HardFault Status Register SCB_HFSR Read-write 0x00000000
OXEOOOED34 MemManage Fault Address Register SCB_MMFAR Read-write Unknown
OXEOOOED38 BusFault Address Register SCB_BFAR Read-write Unknown
OXEOOOED3C Auxiliary Fault Status Register SCB_AFSR Read-write 0x00000000

Notes: 1. See the register description for more information.

2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (OXEOOOED28 - 8 bits),
“BFSR: Bus Fault Status Subregister” (OXEOOOED29 - 8 bits), “UFSR: Usage Fault Status Subregister” (OXEOOOED2A - 16

bits).

200 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

11.9.1.1 Auxiliary Control Register

Name: SCB_ACTLR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | DISOOFP | DISFPCA |
7 6 5 4 3 2 1 0
| - | DISFOLD | DISDEFWBUF | DISMCYCINT |

The SCB_ACTLR register provides disable bits for the following processor functions:
e IT folding
e Write buffer use for accesses to the default memory map
e Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally
require modification.

» DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

» DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

» DISFOLD: Disable Folding

When set to 1, disables the IT folding.

Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT instruction.
This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in looping. If a task must
avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

 DISDEFWBUF: Disable Default Write Buffer

When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise
but decreases the performance, as any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

» DISMCYCINT: Disable Multiple Cycle Interruption

When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt
latency of the processor, as any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

SAMANS/SAMAN16 [DATASHEET 201
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.2 CPUID Base Register

Name: SCB_CPUID
Access: Read-write
Reset: 0x000000000

31 30 29 28 27 26 25 24
| Implementer

23 22 21 20 19 18 17 16
| Variant Constant

15 14 13 12 11 10 9 8
| PartNo

7 6 5 4 3 2 1 0
| PartNo | Revision

The SCB_CPUID register contains the processor part number, version, and implementation information.

* Implementer: Implementer Code
0x41: ARM.

* Variant: Variant Number
It is the r value in the rpn product revision identifier:
0x0: Revision 0.

* Constant
Reads as OxF.

* PartNo: Part Number of the Processor
0xC24 = Cortex-M4.

* Revision: Revision Number

It is the p value in the rnpn product revision identifier:

0x0: Patch 0.

202 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

11.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| NMIPENDSET | - PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR - |
23 22 21 20 19 18 17 16

| - | ISRPENDING VECTPENDING |
15 14 13 12 11 10 9 8

| VECTPENDING RETTOBASE - VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

The SCB_ICSR register provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and
clear-pending bits for the PendSV and SysTick exceptions.

It indicates:

e The exception number of the exception being processed, and whether there are preempted active
exceptions,

e The exception number of the highest priority pending exception, and whether any interrupts are pending.

* NMIPENDSET: NMI Set-pending

Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMI is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a
write of 1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if
the NMI signal is reasserted while the processor is executing that handler.

* PENDSVSET: PendSV Set-pending

Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

SAMANS/SAMAN16 [DATASHEET 203
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

 PENDSVCLR: PendSV Clear-pending
Write:
0: No effect.

1: Removes the pending state from the PendSV exception.

 PENDSTSET: SysTick Exception Set-pending
Write:

0: No effect.

1: Changes SysTick exception state to pending.
Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

» PENDSTCLR: SysTick Exception Clear-pending

Write:

0: No effect.

1: Removes the pending state from the SysTick exception.
This bit is Write-only. On a register read, its value is Unknown.

* ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)
0: Interrupt not pending.
1: Interrupt pending.

» VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception
0: No pending exceptions.
Nonzero: The exception humber of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

« RETTOBASE: Preempted Active Exceptions Present or Not
0: There are preempted active exceptions to execute.
1: There are no active exceptions, or the currently-executing exception is the only active exception.

¢ VECTACTIVE: Active Exception Number Contained
0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt
Program Status Register” .

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” .
Note: When the user writes to the SCB_ICSR register, the effect is unpredictable if:

- Writing 1 to the PENDSVSET bit and writing 1 to the PENDSVCLR bit
- Writing 1 to the PENDSTSET bit and writing 1 to the PENDSTCLR bit.

204 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.4 Vector Table Offset Register

Name: SCB_VTOR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

| TBLOFF | - |

The SCB_VTOR register indicates the offset of the vector table base address from memory address 0x00000000.

» TBLOFF: Vector Table Base Offset

It contains bits [29:7] of the offset of the table base from the bottom of the memory map.
Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the next
statement to give the information required for your implementation; the statement reminds the user of how to determine the
alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the
alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the alignment must be on a 64-word
boundary because the required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

SAMANS/SAMAN16 [DATASHEET 205
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| VECTKEYSTAT/VECTKEY |
23 22 21 20 19 18 17 16

| VECTKEYSTAT/VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANNESS - PRIGROUP |
7 6 5 4 3 2 1 0

- ISYSRESETREQ VECTSII'ERACTl VECTRESET

The SCB_AIRCR register provides priority grouping control for the exception model, endian status for data accesses, and
reset control of the system. To write to this register, write OX5FA to the VECTKEY field, otherwise the processor ignores

the write.

* VECTKEYSTAT: Register Key
Read:
Reads as 0xFAO05.

* VECTKEY: Register Key
Write:
Writes Ox5FA to VECTKEY, otherwise the write is ignored.

« ENDIANNESS: Data Endianness
0: Little-endian.

1: Big-endian.

206 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

* PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n
fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the
PRIGROUP value controls this split:

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP | Binary Point® Group Priority Bits Subpriority Bits | Group Priorities Subpriorities
0b000 bXxxxxxxx.y [7:1] None 128 2
0b001 bXxxxxxx.yy [7:2] [4:0] 64 4
0b010 bxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32
0b101 bxx.yyyyyy [7:6] [5:0] 4 64
0Ob110 bx.yyyyyyy [7] [6:0] 2 128
0Ob111 b.yyyyyyy None [7:0] 1 256

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

« SYSRESETREQ: System Reset Request

0: No system reset request.

1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

+ VECTCLRACTIVE

Reserved for Debug use. This bit reads as 0. When writing to the register, write 0 to this bit, otherwise the behavior is
unpredictable.

+ VECTRESET

Reserved for Debug use. This bit reads as 0. When writing to the register, write 0 to this bit, otherwise the behavior is
unpredictable.

SAMANS/SAMAN16 [DATASHEET 207
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.6 System Control Register

Name: SCB_SCR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | SEVONPEND | - | SLEEPDEEP |SLEEPONEXIT - |

« SEVONPEND: Send Event on Pending Bit
0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.
1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

The processor also wakes up on execution of an SEV instruction or an external event.

» SLEEPDEEP: Sleep or Deep Sleep

Controls whether the processor uses sleep or deep sleep as its low power mode:
0: Sleep.

1: Deep sleep.

* SLEEPONEXIT: Sleep-on-exit

Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:

0: Do not sleep when returning to Thread mode.

1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

208 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.7 Configuration and Control Register

Name: SCB_CCR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - STKALIGN BFHFNMIGN |
7 6 5 4 3 2 1 0
USERSETMPE [NONBASETHR
- DIV_0_TRP |UNALIGN_TRP - ND DENA

The SCB_CCR register controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults
escalated by FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the
access to the NVIC_STIR register by unprivileged software (see “Software Trigger Interrupt Register”).

* STKALIGN: Stack Alignment

Indicates the stack alignment on exception entry:
0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the
exception, it uses this stacked bit to restore the correct stack alignment.

e« BFHFNMIGN: Bus Faults Ignored

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.
1: Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

* DIV_O_TRP: Division by Zero Trap

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:
0: Do not trap divide by 0.

1: Trap divide by O.

When this bit is set to 0, a divide by zero returns a quotient of 0.

SAMANS/SAMAN16 [DATASHEET 209
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

*« UNALIGN_TRP: Unaligned Access Trap

Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.

1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

* USERSETMPEND

Enables unprivileged software access to the NVIC_STIR register, see “Software Trigger Interrupt Register” :
0: Disable.

1: Enable.

+ NONEBASETHRDENA: Thread Mode Enable
Indicates how the processor enters Thread mode:
0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception
Return” .

210 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.8 System Handler Priority Registers

The SCB_SHPR1-SCB_SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable pri-
ority. They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Table 11-33. System Fault Handler Priority Fields

Handler Field Register Description
Memory management fault (MemManage) PRI_4
Bus fault (BusFault) PRI_5 “System Handler Priority Register 1”
Usage fault (UsageFault) PRI_6
SvcCall PRI_11 “System Handler Priority Register 2”
PendSV PRI_14

“System Handler Priority Register 3”
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and
ignore writes.

SAMANS/SAMAN16 [DATASHEET 211
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRI_5 |
7 6 5 4 3 2 1 0

| PRI_4 |

* PRIL_6: Priority
Priority of system handler 6, UsageFault.

e PRI_5: Priority
Priority of system handler 5, BusFault.

* PRI_4: Priority
Priority of system handler 4, MemManage.

212 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
| PRI_11 |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

* PRI_11: Priority
Priority of system handler 11, SVCall.

SAMANS/SAMAN16 [DATASHEET 213
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

* PRI_15: Priority

Priority of system handler 15, SysTick exception.

e PRI_14: Priority

Priority of system handler 14, PendSV.

214 SAMANB/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - USGFAULTENA|BUSFAULTENA MEMFAULTENA|
15 14 13 12 11 10 9 8
SVCALLPENDE|BUSFAULTPEN|MEMFAULTPEN|JUSGFAULTPEN
D DED DED DED SYSTICKACT | PENDSVACT - MONITORACT
7 6 5 4 3 2 1 0
| SVCALLAVCT | - |USGFAULTACT| - |BUSFAULTACT|MEMFAULTACT|

The SHCSR register enables the system handlers, and indicates the pending status of the bus fault, memory management
fault, and SVC exceptions; it also indicates the active status of the system handlers.

» USGFAULTENA: Usage Fault Enable
0: Disables the exception.
1: Enables the exception.

 BUSFAULTENA: Bus Fault Enable
0: Disables the exception.
1: Enables the exception.

+ MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.

1: Enables the exception.

¢ SVCALLPENDED: SVC Call Pending
Read:

0: The exception is not pending.
1: The exception is pending.
Note: The user can write to these bits to change the pending status of the exceptions.

e BUSFAULTPENDED: Bus Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.
Note: The user can write to these bits to change the pending status of the exceptions.

SAMANS/SAMAN16 [DATASHEET 215
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

+ MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

e SYSTICKACT: SysTick Exception Active
Read:
0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked content
can cause the processor to generate a fault exception. Ensure that the software writing to this register retains and subsequently
restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-modify-write
procedure to ensure that only the required bit is changed.

« PENDSVACT: PendSV Exception Active

0: The exception is not active.

1: The exception is active.

* MONITORACT: Debug Monitor Active
0: Debug monitor is not active.
1: Debug monitor is active.

« SVCALLACT: SVC Call Active
0: SVC call is not active.
1: SVC call is active.

 USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.
1: Usage fault exception is active.

 BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.
1: Bus fault exception is active.

« MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.

216 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to
the active bits to perform a context switch that changes the current exception type.

SAMANS/SAMAN16 [DATASHEET 217
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| — | DIVBYZERO | UNALIGNED |
23 22 21 20 19 18 17 16

| - | NOCP | INVPC | INVSTATE | UNDEFINSTR |
15 14 13 12 11 10 9 8

| BFRVALID | - | STKERR | UNSTKERR |IMPRECISERR| PRECISERR| IBUSERR |
7 6 5 4 3 2 1 0

| MMARVALID | - | MLSPERR | MSTKERR | MUNSTKERR| - | DACCVIOL | IACCVIOL |

e IACCVIOL: Instruction Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No instruction access violation fault.

1. The processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the SCB_MMFAR register.

 DACCVIOL: Data Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the SCB_MMFAR register with the address of the attempted access.

* MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No unstacking fault.

1. Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the SCB_MMFAR register.

* MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to SCB_MMFAR register.

218 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

« MLSPERR: MemManage during Lazy State Preservation

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No MemManage fault occurred during the floating-point lazy state preservation.
1: A MemManage fault occurred during the floating-point lazy state preservation.

* MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR register holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR
value has been overwritten.

* IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .
0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR register.

* PRECISERR: Precise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister” .
0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR register.

* IMPRECISERR: Imprecise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister” .
0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR register.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
that both this bit and one of the precise fault status bits are set to 1.

 UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister” .

0: No unstacking fault.

1: Unstack for an exception return has caused one or more bus faults.

SAMANS/SAMAN16 [DATASHEET 219
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

* STKERR: Bus Fault on Stacking for Exception Entry

This is part of “BFSR: Bus Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the SCB_BFAR register.

 BFARVALID: Bus Fault Address Register (BFAR) Valid flag
This is part of “BFSR: Bus Fault Status Subregister” .

0: The value in SCB_BFAR is not a valid fault address.

1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This
prevents problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

* UNDEFINSTR: Undefined Instruction Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No undefined instruction usage fault.

1: The processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.
An undefined instruction is an instruction that the processor cannot decode.

» INVSTATE: Invalid State Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No invalid state usage fault.

1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal
use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

» INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister” . It is caused by an invalid PC load by EXC_RETURN:
0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

220 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

» NOCP: No Coprocessor Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” . The processor does not support coprocessor instructions:
0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

* UNALIGNED: Unaligned Access Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR register to 1. See “Configuration
and Control Register” . Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of
UNALIGN_TRP.

« DIVBYZERO: Divide by Zero Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero. Enable trapping of divide by zero by setting the DIV_0O_TRP bit in the SCB_CCR register to 1. See
“Configuration and Control Register” .

SAMANS/SAMAN16 [DATASHEET 221
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| UFSR |
23 22 21 20 19 18 17 16

| UFSR |
15 14 13 12 11 10 9 8

| BFSR |
7 6 5 4 3 2 1 0

| MMFSR |

* MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
11.9.1.13.

* BFSR: Bus Fault Status Subregister

The flags in the BFSR subregister indicate the cause of a bus access fault. See bitfield [14..8] description in Section
11.9.1.13.

* UFSR: Usage Fault Status Subregister

The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 11.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit thatis setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

The SCB_CFSR register indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible.
The user can access the SCB_CFSR register or its subregisters as follows:

e Access complete SCB_CFSR with a word access to OXEOOOED28
Access MMFSR with a byte access to OXEOOOED28

Access MMFSR and BFSR with a halfword access to OxEOOOED28
Access BFSR with a byte access to OXEOOOED29

Access UFSR with a halfword access to OXEOOOED2A.

222 SAM4N8/SAM4AN16 [DATASHEET)] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.15 Hard Fault Status Register

Name: SCB_HFSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24

| DEBUGEVT | FORCED | - |

23 22 21 20 19 18 17 16

I - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

| - | VECTTBL | - |

The HFSR register gives information about events that activate the hard fault handler. This register is read, write to clear.
This means that bits in the register read normally, but writing 1 to any bit clears that bit to 0.

» DEBUGEVT: Reserved for Debug Use
When writing to the register, write 0 to this bit, otherwise the behavior is unpredictable.

» FORCED: Forced Hard Fault

It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0: No forced hard fault.
1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

 VECTTBL: Bus Fault on a Vector Table

It indicates a bus fault on a vector table read during an exception processing:
0: No bus fault on vector table read.

1: Bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit thatis setto 1 is
cleared to 0 only by writing 1 to that bit, or by a reset.

SAMANS/SAMAN16 [DATASHEET 223
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The MMFAR register contains the address of the location that generated a memory management fault.

+ ADDRESS

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated

the memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR register is valid.
See “MMFSR: Memory Management Fault Status Subregister” .

224 SAM4N8/SAM4AN16 [DATASHEET)] /ltmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.9.1.17 Bus Fault Address Register

Name: SCB_BFAR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 1 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The BFAR register contains the address of the location that generated a bus fault.

« ADDRESS
When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the

bus fault.

Notes: 1.

When an unaligned access faults, the address in the SCB_BFAR register is the one requested by the instruction, even if it is

not the address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR register is valid. See “BFSR: Bus

Fault Status Subregister” .

Atmel

SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

225

11.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps
to) the value in the SYST_RVR register on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power mode, the SysTick
counter stops.
Ensure that the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset; the correct initialization sequence for the
SysTick counter is:

1. Program the reload value.

2. Clear the current value.

3. Program the Control and Status register.

11.10.1 System Timer (SysTick) User Interface

Table 11-34. System Timer (SYST) Register Mapping

Offset Register Name Access Reset
OxEOOOEO010 SysTick Control and Status Register SYST_CSR Read-write 0x00000004
OxEOOOEO014 SysTick Reload Value Register SYST_RVR Read-write Unknown
OxEOOOEO018 SysTick Current Value Register SYST_CVR Read-write Unknown
OxEOOOEO1C SysTick Calibration Value Register SYST_CALIB Read-only 0xC0000000

226 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

11.10.1.1 SysTick Control and Status

Name: SYST_CSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - COUNTFLAG |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| | | | | CLKSOURCE TICKINT ENABLE |

The SysTick SYST_CSR register enables the SysTick features.

¢« COUNTFLAG: Count Flag
Returns 1 if the timer counted to 0 since the last time this was read.

* CLKSOURCE: Clock Source
Indicates the clock source:

0: External Clock.

1: Processor Clock.

e TICKINT

Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.

1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

« ENABLE

Enables the counter:
0: Counter disabled.
1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR register and then counts down. On
reaching 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then
loads the RELOAD value again, and begins counting.

SAMANS/SAMAN16 [DATASHEET 227
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.10.1.2 SysTick Reload Value Registers

Name: SYST_RVR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| RELOAD |

The SYST_RVR register specifies the start value to load into the SYST_CVR register.

e RELOAD
Value to load into the SYST_CVR register when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of O is possible, but has no
effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N pro-
cessor clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD
to 99.

228 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

11.10.1.3 SysTick Current Value Register

Name: SYST_CVR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

The SysTick SYST_CVR register contains the current value of the SysTick counter.

e CURRENT
Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

SAMANS/SAMAN16 [DATASHEET 229
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.10.1.4 SysTick Calibration Value Register

Name: SYST_CALIB

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| NOREF | SKEW | - |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

The SysTick SYST_CSR register indicates the SysTick calibration properties.

* NOREF: No Reference Clock

It indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.

1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

+ SKEW

It indicates whether the TENMS value is exact:

0: TENMS value is exact.

1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

« TENMS: Ten Milliseconds

The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibra-
tion value is not known.

Read as 0x000030D4. The SysTick calibration value is fixed at 0x000030D4 (12500), which allows the generation of a time
base of 1 ms with SysTick clock at 12.5 MHz (100/8 = 12.5 MHz).

230 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.11 Memory Protection Unit (MPU)
The MPU divides the memory map into a number of regions, and defines the location, size, access permissions,
and memory attributes of each region. It supports:
e Independent attribute settings for each region
e Overlapping regions
e Export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:
e Eight separate memory regions, 0-7
e A background region.
When memory regions overlap, a memory access is affected by the attributes of the region with the highest

number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps
region 7.

The background region has the same memory access attributes as the default memory map, but is accessible
from privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the
same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory
management fault. This causes a fault exception, and might cause the termination of the process in an OS
environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be
executed. Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes”).

Table 11-35 shows the possible MPU region attributes. These include Share ability and cache behavior attributes
that are not relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for
guidelines for programming such an implementation.

Table 11-35. Memory Attributes Summary

Memory Type Shareability | Other Attributes Description

All accesses to Strongly-ordered memory occur in program order. All

Strongly- ordered | - i Strongly-ordered regions are assumed to be shared.

) Shared - Memory-mapped peripherals that several processors share.
pevice Non-shared - Memory-mapped peripherals that only a single processor uses.
Shared Normal memory that is shared between several processors.
Normal Non-shared Normal memory that only a single processor uses.

SAMANS/SAMAN16 [DATASHEET 231
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.11.1 MPU Access Permission Attributes

232

This section describes the MPU access permission attributes. The access permission bits (TEX, C, B, S, AP, and
XN) of the MPU_RASR control the access to the corresponding memory region. If an access is made to an area of
memory without the required permissions, then the MPU generates a permission fault.

The table below shows the encodings for the TEX, C, B, and S access permission bits.

Table 11-36. TEX, C, B, and S Encoding
TEX | C B S Memory Type Shareability | Other Attributes
Strongly-
(€] -
0 0 X ordered Shareable
1 x® | Device Shareable -
0 Not _ _
00O 0 Normal shareable Outer and inner write-through. No
write allocate.
1 Shareable
1
Not)))
1 0 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable
0 Not
0 0 Normal shareable
1 Shareable
1 x® | Reserved encoding -
b001 0 e Implementation defined i
attributes.
1 0 Not _ _ _
1 Normal shareable Outer and inner write-back. Write and
read allocate.
1 Shareable
0 x® | Device Not Nonshared Device.
0 shareable
b010 1 x| Reserved encoding -
1 x® | x® | Reserved encoding -
0 Not
b1B A A Normal shareable
B
1 Shareable
Note: 1. The MPU ignores the value of this bit.

Table 11-37 shows the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Table 11-37. Cache Policy for Memory Attribute Encoding
Encoding, AA or BB | Corresponding Cache Policy
00 Non-cacheable
01 Write back, write and read allocate
10 Write through, no write allocate
11 Write back, no write allocate

SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

Table 11-38 shows the AP encodings that define the access permissions for privileged and unprivileged software.

Table 11-38. AP Encoding
Privileged Unprivileged
AP[2:0] | Permissions Permissions Description
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission fault
011 RW RW Full access
100 Unpredictable Unpredictable | Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

11.11.1.1 MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory management fault, see
“Exceptions and Interrupts” . The MMFSR indicates the cause of the fault. See “MMFSR: Memory Management
Fault Status Subregister” for more information.

11.11.1.2 Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASR registers. Each
register can be programed separately, or a multiple-word write can be used to program all of these registers.
MPU_RBAR and MPU_RASR aliases can be used to program up to four regions simultaneously using an STM
instruction.

11.11.1.3 Updating an MPU Region Using Separate Words
Simple code to configure one region:

; Rl = regi on nunber

; R2 = sizel/enable

; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Regi on Numnber

STR R4, [RO, #0x4] ; Regi on Base Address

STRH R2, [RO, #0x8] ; Region Size and Enabl e

STRH R3, [RO, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU, if the region being changed was previously
enabled. For example:

; Rl = regi on nunber

; R2 = sizel/enable

; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Regi on Number

BIC R, R2, #1 ; Disable

STRH R2, [RO, #0x8] ; Region Size and Enabl e
STR R4, [RO, #0x4] ; Regi on Base Address
STRH R3, [RO, #0xA] ; Region Attribute

ORR R2, #1 ; Enabl e

STRH R2, [RO, #0x8] ; Region Size and Enabl e

SAM4N8/SAM4AN16 [DATASHEET] 233

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

The software must use memory barrier instructions:
e Before the MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might
be affected by the change in MPU settings

e After the MPU setup, if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception
handler, or is followed by an exception return, because the exception entry and exception return mechanisms
cause memory barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it accesses the MPU
through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after the programming
sequence, a DSB instruction and an ISB instruction must be used. A DSB is required after changing MPU settings,
such as at the end of a context switch. An ISB is required if the code that programs the MPU region or regions is
entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking
an exception, then an ISB is not required.

11.11.1.4 Updating an MPU Region Using Multi-word Writes

The user can program directly using multi-word writes, depending on how the information is divided. Consider the
following reprogramming:

; RL = region nunber

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register
STR R1, [RO, #0x0] ; Region Nunber

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; Rl = region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU regi on nunber register

STM RO, {Rl-R3} ; Region Nunber, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR contains the required
region number and had the VALID bit set to 1. See “MPU Region Base Address Register” . Use this when the data
is statically packed, for example in a boot loader:

; RL = address and region nunber in one

; R2 = size and attributes in one

LDR RO, =MPU RBAR ; OxEOOOEDOC, MPU Regi on Base register
STR R1, [RO, #0x0] ; Region base address and

; region nunmber conbined with VALID (bit 4) set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; RL = address and regi on nunber in one
; RR = size and attributes in one
LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Regi on Base regi ster
STM RO, {R1l-R2} ; Regi on base address, region nunber and VALID bit,
; and Region Attribute, Size and Enabl e

11.11.1.5 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD
field of the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register” . The least
significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling

234 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

a subregion means another region overlapping the disabled range matches instead. If no other enabled region
overlaps the disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be
set to 0x00, otherwise the MPU behavior is unpredictable.

11.11.1.6 Example of SRD Use

Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB. To ensure the
attributes from region 1 apply to the first 128 KB region, set the SRD field for region 2 to bO0000011 to disable the
first two subregions, as in Figure 11-14 below:

Figure 11-14. SRD Use

Region 2, with Offset from
subregions base address
512KB
448KB
384KB
320KB
256KB
Region 1 192KB
128KB
64KB
0

Disabled subregion
Disabled subregion

Base address of both regions

11.11.1.7 MPU Design Hints And Tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt
handlers might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:
e Except for the MPU_RASR register, it must use aligned word accesses
e Forthe MPU_RASR register, it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent
any previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU
as follows:

Table 11-39. Memory Region Attributes for a Microcontroller

Memory Region | TEX C B S Memory Type and Attributes

Flash memory b000 1 | 0 | 0 | Normal memory, non-shareable, write-through
Internal SRAM b000 1 | 0 | 1 | Normal memory, shareable, write-through

External SRAM b000 1 | 1 | 1 | Normal memory, shareable, write-back, write-allocate
Peripherals b000 0 | 1 | 1 | Device memory, shareable

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system
behavior. However, using these settings for the MPU regions can make the application code more portable. The
values given are for typical situations. In special systems, such as multiprocessor designs or designs with a
separate DMA engine, the shareability attribute might be important. In these cases, refer to the recommendations
of the memory device manufacturer.

SAMANS/SAMAN16 [DATASHEET 235
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.11.2 Memory Protection Unit (MPU) User Interface

Table 11-40. Memory Protection Unit (MPU) Register Mapping

Offset Register Name Access Reset

OxEOOOED90 MPU Type Register MPU_TYPE Read-only 0x00000800
OXEOOOED94 MPU Control Register MPU_CTRL Read-write | 0x00000000
OXEOOOED98 MPU Region Number Register MPU_RNR Read-write | 0x00000000
OxXEOOOED9C MPU Region Base Address Register MPU_RBAR Read-write | 0x00000000
OXEOOOEDAO MPU Region Attribute and Size Register MPU_RASR Read-write | 0x00000000
OxXEOOOEDA4 Alias of RBAR, see MPU Region Base Address Register MPU_RBAR_A1 | Read-write | 0x00000000
OXEOOOEDAS Alias of RASR, see MPU Region Attribute and Size Register MPU_RASR_A1l | Read-write | 0x00000000
OXEOOOEDAC | Alias of RBAR, see MPU Region Base Address Register MPU_RBAR_A2 | Read-write | 0x00000000
OXEOOOEDBO Alias of RASR, see MPU Region Attribute and Size Register MPU_RASR_A2 | Read-write | 0x00000000
OxXEOOOEDB4 Alias of RBAR, see MPU Region Base Address Register MPU_RBAR_A3 | Read-write | 0x00000000
OxXEOOOEDBS8 Alias of RASR, see MPU Region Attribute and Size Register MPU_RASR_A3 | Read-write | 0x00000000

236 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

11.11.2.1 MPU Type Register

Name: MPU_TYPE

Access: Read-write

Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| IREGION |
15 14 13 12 11 10 9 8

| DREGION |
7 6 5 4 3 2 1 0

| - | SEPARATE |

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

* IREGION: Instruction Region
Indicates the number of supported MPU instruction regions.
Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

 DREGION: Data Region
Indicates the number of supported MPU data regions:
0x08 = Eight MPU regions.

» SEPARATE: Separate Instruction
Indicates support for unified or separate instruction and date memory maps:
0: Unified.

SAMANS/SAMAN16 [DATASHEET 237
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.11.2.2 MPU Control Register

Name: MPU_CTRL

Access: Read-write

Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - |PRIVDEFENA| HENMIENA | ENABLE |

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of
the MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

* PRIVDEFENA: Privileged Default Memory Map Enabled
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by
any enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software
accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over
this default map.

If the MPU is disabled, the processor ignores this bit.

 HFNMIENA: Hard Fault and NMI Enabled

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.
1. The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

« ENABLE

Enables the MPU:

0: MPU disabled.

1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

* For privileged accesses, the default memory map is as described in “Memory Model” . Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

» Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

238 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless
the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged soft-
ware can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the
MPU is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are
accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with
priority —1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is
enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

SAMANS/SAMAN16 [DATASHEET 239
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.11.2.3 MPU Region Number Register

Name: MPU_RNR
Access: Read-write
Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| REGION |

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASR registers.

¢« REGION
Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers.

The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. How-
ever, the region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base
Address Register” . This write updates the value of the REGION field.

240

SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

11.11.2.4 MPU Region Base Address Register

Name: MPU_RBAR

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 N

| ADDR |
N-1 6 5 4 3 2 1 0

| - | VALID | REGION |

Note: If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field.

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the
MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

* ADDR: Region Base Address

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified
by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies
the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,
for example, at 0x00010000 or 0x00020000.

* VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and
ignores the value of the REGION field.

1. The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for
the region specified in the REGION field.

Always reads as zero.

* REGION: MPU Region
For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the MPU_RNR.

SAMANS/SAMAN16 [DATASHEET 241
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| — XN - | AP |
23 22 21 20 19 18 17 16

| - TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE | ENABLE |

The MPU_RASR defines the region size and memaory attributes of the MPU region specified by the MPU_RNR, and
enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
e The most significant halfword holds the region attributes.
e The least significant halfword holds the region size, and the region and subregion enable bits.

e XN: Instruction Access Disable
0: Instruction fetches enabled.
1: Instruction fetches disabled.

*« AP: Access Permission
See Table 11-38.

¢« TEX, C, B: Memory Access Attributes
See Table 11-36.

¢ S: Shareable
See Table 11-36.

e SRD: Subregion Disable

For each bit in this field:

0: Corresponding sub-region is enabled.
1: Corresponding sub-region is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD
field as 0x00.

242 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

e SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(517&+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU RBAR.

SIZE Value | Region Size | Value of N | Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) | 1KB 10 -

b10011 (19) | 1 MB 20 -

b11101 (29) | 1 GB 30 -

b11111 (31) | 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR, see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

SAMANS/SAMAN16 [DATASHEET 243
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

11.12 Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory access is invalid.

An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is

said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

Banked register A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

Base register . . L . o . . .
9 In instruction descriptions, a register specified by a load or store instruction that is used to hold the

base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register”

Big-endian (BE) Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant” , “Endianness” , “Little-endian (LE)" .

Big-endian memory
Memory in which:
a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address,
a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also “Little-endian memory” .

Breakpoint
A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.
244 SAMANS/SAMAN16 [DATASHEET
[] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Byte-invariant

Condition field

Conditional execution

Context

Coprocessor

Debugger

Direct Memory Access
(DMA)

Doubleword

Doubleword-aligned

Endianness

Exception

Atmel

In a byte-invariant system, the address of each byte of memory remains unchanged when switching
between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.

An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

A four-bit field in an instruction that specifies a condition under which the instruction can execute.

If the condition code flags indicate that the corresponding condition is true when the instruction starts
executing, it executes normally. Otherwise, the instruction does nothing.

The environment that each process operates in for a multitasking operating system. In ARM
processors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

An operation that accesses main memory directly, without the processor performing any accesses to
the data concerned.

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

A data item having a memory address that is divisible by eight.

Byte ordering. The scheme that determines the order that successive bytes of a data word are stored
in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)” and “Big-endian (BE)”

An event that interrupts program execution. When an exception occurs, the processor suspends the
normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

SAM4N8/SAM4AN16 [DATASHEET] 245

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Exception service routine

Exception vector

Flat address mapping

Halfword

lllegal instruction

Implementation-defined

Implementation-specific

Index register

Instruction cycle count

Interrupt handler

Interrupt vector

Little-endian (LE)

246 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

See “Interrupt handler” .

See “Interrupt vector” .

A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

A 16-bit data item.

An instruction that is architecturally Undefined.

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register” .

The number of cycles that an instruction occupies the Execute stage of the pipeline.

A program that control of the processor is passed to when an interrupt occurs.

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

See also “Big-endian (BE)” , “Byte-invariant” , “Endianness” .

Atmel

Little-endian memory

Load/store architecture

Memory Protection Unit
(MPU)

Prefetching

Preserved

Read

Region

Reserved

Thread-safe

Thumb instruction

Unaligned

Atmel

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at
that address,

a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also “Big-endian memory” .

A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before
the preceding instructions have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

Preserved by writing the same value back that has been previously read from the same field on the
same processor.

Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

A partition of memory space.

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

A data item stored at an address that is not divisible by the number of bytes that defines the data size
is said to be unaligned. For example, a word stored at an address that is not divisible by four.

SAM4N8/SAM4AN16 [DATASHEET] 247

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Undefined Indicates an instruction that generates an Undefined instruction exception.

Unpredictable One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset
Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

Word A 32-bit data item.

Write Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

248 SAMANS/SAM4N16 [DATASHEET
[] Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

12. Debug and Test Features

12.1 Description

The SAM4N Series microcontrollers feature a number of complementary debug and test capabilities. The Serial
Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug Port (JTAG-
DP) is used for standard debugging functions, such as downloading code and single-stepping through programs. It
also embeds a serial wire trace.

12.2 Embedded Characteristics
e Debug access to all memories and registers in the system, including Cortex-M4 register bank when the core
is running, halted, or held in reset
Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access
Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches
Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
Instrumentation Trace Macrocell (ITM) for support of printf style debugging
IEEE1149.1 JTAG Boundary-scan on all digital pins

Figure 12-1. Debug and Test Block Diagram

TMS

L [

TCK/SWCLK

[]| o

Boundary SWJ-DP d D JTAGSEL

TAP
L

|:| TDO/TRACESWO

_/;

POR

Reset
and

Test I:l TST

SAMANS/SAMAN16 [DATASHEET 249
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

12.3 Application Examples

12.3.1 Debug Environment

Figure 12-2 shows a complete debug environment example. The SWJ-DP interface is used for standard

debugging functions, such as downloading code and single-stepping through the program, and viewing core and
peripheral registers.

Figure 12-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM4

SAM4-based Application Board

12.3.2 Test Environment

Figure 12-3 shows a test environment example (JTAG boundary scan). Test vectors are sent and interpreted by
the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These
devices can be connected to form a single scan chain.

250 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15 A t I I IeL

Figure 12-3. Application Test Environment Example

Test Adaptor
Tester
JTAG
Probe
JTAG . .
Connector [| Chipn I = = Chip 2
I
SAM4-based Application Board In Test
12.4 Debug and Test Pin Description
Table 12-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input
SWD/ITAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out Output @
TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input
JTAGSEL JTAG Selection Input High

Note: 1. TDO pinis set in input mode when the Cortex-M4 Core is not in debug mode. Thus the internal pull-up
corresponding to this PIO line must be enabled to avoid current consumption due to floating input.

SAMANS/SAMAN16 [DATASHEET 251
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

12.5 Functional Description

12.5.1 Test Pin

One dedicated pin, TST, is used to define the device operating mode. When this pin is at low level during power-
up, the device is in normal operating mode. When at high level, the device is in test mode or FFPI mode. The TST
pin integrates a permanent pull-down resistor of about 15 kQ, so that it can be left unconnected for normal
operation. Note that when setting the TST pin to low or high level at power up, it must remain in the same state
during the duration of the whole operation.

12.5.2 Debug Architecture
Figure 12-4 shows the Debug Architecture used in the SAM4. The Cortex-M4 embeds five functional units for
debug:
e SWJ-DP (Serial Wire/JTAG Debug Port)
e FPB (Flash Patch Breakpoint
e DWT (Data Watchpoint and Trace)
e ITM (Instrumentation Trace Macrocell)
e TPIU (Trace Port Interface Unit)
The debug architecture information that follows is mainly dedicated to developers of SWJ-DP emulators/probes

and debugging tool vendors for Cortex M4-based microcontrollers. For further details on SWJ-DP see the Cortex
M4 technical reference manual.

Figure 12-4. Debug Architecture

DWT

4 watchpoints

FPB
PC sampler SWJ-DP
6 breakpoints
data address sampler
SWD/JTAG
data sampler I™
software trace SWO trace
32 channels
interrupt trace TPIU
time stamping
CPU statistics
252 SAMANS/SAMAN16 [DATASHEET)] /It
mel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

12.5.3 Serial Wire/JTAG Debug Port (SWJ-DP)

The Cortex-M4 embeds a SWJ-DP debug port which is the standard CoreSight™ debug port. It combines Serial
Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG Debug Port(JTAG-DP), 5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial Wire Debug Port, it
must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables JTAG-DP and
enables SW-DP.

When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace. The asynchronous TRACE
output (TRACESWO) is multiplexed with TDO. The asynchronous trace can only be used with SW-DP, not JTAG-
DP.

Table 12-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO T™MS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP
and JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

12.5.3.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-DP is selected by
default after reset.
e Switch from JTAG-DP to SW-DP. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (Ox79E7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
e Switch from SWD to JTAG. The sequence is:
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
— Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (0x3CE7 MSB first)
— Send more than 50 SWCLKTCK cycles with SWDIOTMS =1

12.5.4 FPB (Flash Patch Breakpoint)

The FPB:
e Implements hardware breakpoints.
e Patches code and data from code space to system space.

The FPB unit contains:
e Two literal comparators for matching against literal loads from code space, and remapping to a
corresponding area in system space.
e Six instruction comparators for matching against instruction fetches from code space and remapping to a
corresponding area in system space.
e Alternatively, comparators can also be configured to generate a breakpoint instruction to the processor core
on a match.

SAMANS/SAMAN16 [DATASHEET 253
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

12.5.5 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
e PC sampling packets at set intervals
e PC or data watchpoint packets
e Watchpoint event to halt core
The DWT contains counters for the items that follow:
e Clock cycle (CYCCNT)
Folded instructions
Load Store Unit (LSU) operations
Sleep cycles
CPI (all instruction cycles except for the first cycle)
Interrupt overhead

12.5.6 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Operating System (OS)
and application events, and emits diagnostic system information. The ITM emits trace information as packets
which can be generated by three different sources with several priority levels:

e Software trace: Software can write directly to ITM stimulus registers. This can be done using the printf
function. For more information, refer to Section 12.5.6.1 “How to Configure the ITM".

e Hardware trace: The ITM emits packets generated by the DWT.

Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate
the timestamp.

12.5.6.1 How to Configure the ITM
The following example describes how to output trace data in asynchronous trace mode.
e Configure the TPIU for asynchronous trace mode (refer to Section 12.5.6.3 “How to Configure the TPIU").

e Enable the write accesses into the ITM registers by writing “OXC5ACCES5” into the Lock Access Register
(address: 0XEOOOOFBO).

e Write 0x00010015 into the Trace Control Register:
— Enable ITM.
— Enable synchronization packets.
— Enable SWO behavior.
— Fixthe ATB ID to 1.
e Write Ox1 into the Trace Enable Register:
— Enable the stimulus port 0.
e Write Ox1 into the Trace Privilege Register:

— Stimulus port 0 only accessed in privileged mode (clearing a bit in this register will result in the
corresponding stimulus port being accessible in user mode).

e Write into the Stimulus Port 0 Register: TPIU (Trace Port Interface Unit).
— The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).
— The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

254 SAM4N8/SAM4AN16 [DATASHEET)] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

12.5.6.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous
trace mode is only available when the serial wire debug mode is selected since TDO signal is used in JTAG debug
mode.
Two encoding formats are available for the single pin output:

e Manchester encoded stream. This is the reset value.

e NRZ-based UART byte structure

12.5.6.3How to Configure the TPIU

This example only concerns the asynchronous trace mode.
e Setthe TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to enable the use of
trace and debug blocks.

e Write Ox2 into the Selected Pin Protocol Register.
— Select the Serial Wire Output — NRZ.
e Write 0x100 into the Formatter and Flush Control Register.

e Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

12.5.7 IEEE 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied to low, while JTAGSEL is high during power-up
and must be kept in this state during the whole boundary scan operation. The SAMPLE, EXTEST and BYPASS
functions are implemented. In SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID
that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset
must be performed after JTAGSEL is changed. A Boundary-scan Descriptor Language (BSDL) file to set up the
test is provided on www.atmel.com.

12.5.7.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which corresponds to active pins and associated
control signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be
forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects
the direction of the pad.

For more information, please refer to BSDL files available for the SAM4 Series.

SAMANS/SAMAN16 [DATASHEET 255
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

http://www.atmel.com

12.5.8 ID Code Register

Access: Read-only

31 30 29 28 27 26 25 24

| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |
15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

* VERSION[31:28]: Product Version Number
Set to 0x0.

 PART NUMBER[27:12]: Product Part Number

Chip Name Chip ID

SAM4N O0x05B2E

* MANUFACTURER IDENTITY[11:1]
Set to Ox01F.

- Bit[0] Required by IEEE Std. 1149.1

Set to Ox1.
Chip Name JTAG ID Code
SAM4N 0x05B3_603F

256 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13. Reset Controller (RSTC)

13.1 Description

The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the system without any

external components. It reports which reset occurred last.

The Reset Controller also drives independently or simultaneously the external reset and the peripheral and

processor resets.

13.2 Embedded Characteristics
e Manages all Resets of the System, Including
— External Devices through the NRST Pin
— Processor Reset
— Peripheral Set Reset
e Based on Embedded Power-on Cell
e Reset Source Status
— Status of the Last Reset
— Either Software Reset, User Reset, Watchdog Reset
e External Reset Signal Shaping

13.3 Block Diagram

Figure 13-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset

vddcore_nreset

user_reset

NRST

NRST
|:|_ Manager
nrst_out
— exter_nreset

WDRPROC

wd_fault

Reset
State
Manager

—— rstc_irq

> proc_nreset

> periph_nreset

SLCK

SAM4N8/SAM4AN16 [DATASHEET] 257

A t | I leL Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.4

13.4.1

13.4.2

Functional Description

Reset Controller Overview
The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at Slow Clock and
generates the following reset signals:
e proc_nreset: Processor reset line. It also resets the Watchdog Timer
e periph_nreset: Affects the whole set of embedded peripherals
e nrst_out: Drives the NRST pin
These reset signals are asserted by the Reset Controller, either on external events or on software action. The

Reset State Manager controls the generation of reset signals and provides a signal to the NRST Manager when an
assertion of the NRST pin is required.

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device
resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Controller, is powered
with VDDIO, so that its configuration is saved as long as VDDIO is on.

NRST Manager

After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR. When ERSTL has
elapsed, the pin behaves as an input and all the system is held in reset if NRST is tied to GND by an external
signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State
Manager. Figure 13-2 shows the block diagram of the NRST Manager.

Figure 13-2. NRST Manager

RSTC_MR

RSTC SR URSTIEN

URSTS
ﬁ)—» rstc_irq
NRSTL | rsTC_MR Other [2

URSTEN interrupt
sources
I > user_reset

NRST | RSTC_MR
T
| nrst_out

I External Reset Timer fje«———— exter_nreset

13.4.2.1NRST Signal or Interrupt

258

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low, a User Reset is
reported to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs.
Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR. As soon as the pin
NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, the
bit URSTIEN in RSTC_MR must be written at 1.

SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.4.2.2 NRST External Reset Control

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this occurs, the “nrst_out”
signal is driven low by the NRST Manager for a time programmed by the field ERSTL in RSTC_MR. This assertion
duration, named EXTERNAL_RESET_LENGTH, lasts 2ERSTH+1) glow Clock cycles. This gives the approximate
duration of an assertion between 60 us and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the
NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is
driven low for a time compliant with potential external devices connected on the system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the system power-up
reset for devices requiring a longer startup time than the Slow Clock Oscillator.

13.4.3 Brownout Manager
The Brownout manager is embedded within the Supply Controller, please refer to the product Supply Controller
section for a detailed description.

13.4.4 Reset States

The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports
the reset status in the field RSTTYP of the Status Register (RSTC_SR). The update of the field RSTTYP is
performed when the processor reset is released.

13.4.4.1 General Reset

A general reset occurs when a Power-on-reset is detected, a Brownout or a Voltage regulation loss is detected by
the Supply controller. The vddcore_nreset signal is asserted by the Supply Controller when a general reset occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR
is reset, the NRST line rises 2 cycles after the vddcore_nreset, as ERSTL defaults at value 0x0.

Figure 13-3 shows how the General Reset affects the reset signals.

Figure 13-3. General Reset State

ey apipipipippEpEpEpEpi{iEnipl

backup_nreset

=2 cycles
proc_nreset

RSTTYP XXX 0x0 = General Reset XXX

periph_nreset

NRST
(nrst_out)

]

|

P S S S
]

i

j

EXTERNAL RESET LENGTH
=2 cycles

SAMANS/SAMAN16 [DATASHEET 259
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.4.4.2 Backup Reset

A Backup reset occurs when the chip returns from Backup Mode. The core_backup_reset signal is asserted by the
Supply Controller when a Backup reset occurs.

The field RSTTYP in RSTC_SR is updated to report a Backup Reset.

13.4.4.3 User Reset

The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in RSTC_MR is at 1.
The NRST input signal is resynchronized with SLCK to insure proper behavior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset and the Peripheral
Reset are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle processor startup.
The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, the RSTTYP field of the Status Register (RSTC_SR) is loaded with
the value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for EXTERNAL_RESET_LENGTH Slow Clock
cycles, as programmed in the field ERSTL. However, if NRST does not rise after EXTERNAL_RESET_LENGTH
because it is driven low externally, the internal reset lines remain asserted until NRST actually rises.

Figure 13-4. User Reset State

SLCK |

MCK

NRST

proc_nreset

RSTTYP

periph_nreset

NRST
(nrst_out)

L L

L L LY

Any
Freq.

L L

L LU UL Y

-\

pEpEREEE

/

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2 cycles
Any XXX 0x4 = User Reset

>= EXTERNAL RESET LENGTH

260 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

13.4.4.4 Software Reset

The Reset Controller offers several commands used to assert the different reset signals. These commands are
performed by writing the Control Register (RSTC_CR) with the following bits at 1:

PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer

PERRST: Writing PERRST at 1 resets all the embedded peripherals including the memory system, and, in
particular, the Remap Command. The Peripheral Reset is generally used for debug purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously).

EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field ERSTL in the
Mode Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these commands can be
performed independently or simultaneously. The software reset lasts 3 Slow Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master
Clock (MCK). They are released when the software reset is left, i.e.; synchronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field ERSTL. However, the
resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field RSTTYP of the
Status Register (RSTC_SR). Other Software Resets are not reported in RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the
Status Register (RSTC_SR). It is cleared as soon as the software reset is left. No other software reset can be
performed while the SRCMP bit is set, and writing any value in RSTC_CR has no effect.

Figure 13-5.

SRCMP in RSTC_SR

Atmel

Software Reset
see | LI L L L L
MCK Any ||||||||||||||||
Freq.
Write RSTC_CR ‘\
Resynch)Processor Startup)
1 cycle =2 cycles
proc_nreset /
if PROCRST=1
RSTTYP Any XXX 0x3 = Software Reset

periph_nreset
if PERRST=1

S X o~

NRST
(nrst_out)
if EXTRST=1

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

N /

SAM4N8/SAM4AN16 [DATASHEET] 261

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.4.4.5Watchdog Reset

The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock cycles.

When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in WDT_MR:

e If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also
asserted, depending on the programming of the field ERSTL. However, the resulting low level on NRST
does not result in a User Reset state.

e If WDRPROC =1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog is enabled by
default and with a period set to a maximum.

When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset controller.

Figure 13-6. Watchdog Reset

262

see L L LD WL L L
MK) J L U U
wd_fault /] N

Procgssor Startup)
2 cycles

proc_nreset

RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC = 0

NRST
(nrst_out)

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.4.5 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources, given in
descending order:
e General Reset
Backup Reset
Watchdog Reset
Software Reset
User Reset

Particular cases are listed below:

e When in User Reset:
— Awatchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.
— A software reset is impossible, since the processor reset is being activated.

e When in Software Reset:
— A watchdog event has priority over the current state.
— The NRST has no effect.

e When in Watchdog Reset:
— The processor reset is active and so a Software Reset cannot be programmed.
— A User Reset cannot be entered.

SAMANS/SAMAN16 [DATASHEET 263
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.4.6 Reset Controller Status Register

The Reset Controller status register (RSTC_SR) provides several status fields:

e RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

e SRCMP bit: This field indicates that a Software Reset Command is in progress and that no further software
reset should be performed until the end of the current one. This bit is automatically cleared at the end of the
current software reset.

e NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on each MCK
rising edge.

e URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR register. This
transition is also detected on the Master Clock (MCK) rising edge (see Figure 13-7). If the User Reset is
disabled (URSTEN = 0) and if the interruption is enabled by the URSTIEN bit in the RSTC_MR register, the
URSTS bit triggers an interrupt. Reading the RSTC_SR status register resets the URSTS bit and clears the
interrupt.

Figure 13-7. Reset Controller Status and Interrupt

read
Peripheral Access RSTC SR
2 cycle 2 cycle
resync¢hronizatipn resynchrionizatior
N

NRST _\/ j

NRSTL
URSTS /
rstc_irq
if (URSTEN = 0) and _

(URSTIEN = 1)

264 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.5 Reset Controller (RSTC) User Interface

Table 13-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -

0x04 Status Register RSTC_SR Read-only 0x0000_0000
0x08 Mode Register RSTC_MR Read-write 0x0000 0001

SAMANS/SAMAN16 [DATASHEET 265
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.5.1 Reset Controller Control Register

Name: RSTC_CR

Address: 0x400E1400

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | - | - | EXTRST | PERRST | - | PROCRST |

* PROCRST: Processor Reset
0 = No effect.

1 = IfKEY is correct, resets the processor.

 PERRST: Peripheral Reset
0 = No effect.
1 =If KEY is correct, resets the peripherals.

* EXTRST: External Reset
0 = No effect.
1 =If KEY is correct, asserts the NRST pin and resets the processor and the peripherals.

KEY: System Reset Key

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

266 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.5.2 Reset Controller Status Register

Name: RSTC_SR
Address: 0x400E1404
Access: Read-only

31 30 29 28 27 26 25 24
I R - S I R R —]
23 22 21 20 19 18 17 16
| — | - | - — | - | — |SRCMP NRSTL |
15 14 13 12 11 10 9 8
| - | - | - - | - | RSTTYP |
7 6 5 4 3 2 1 0
I R — T - 1 - - URSTS |

* URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.
1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

« RSTTYP: Reset Type

Value Name Description
0 General Reset First power-up Reset
1 Backup Reset Return from Backup Mode
2 Watchdog Reset Watchdog fault occurred
3 Software Reset Processor reset required by the software
4 User Reset NRST pin detected low

Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

¢ NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

* SRCMP: Software Reset Command in Progress

0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

Atmel

SAM4N8/SAM4AN16 [DATASHEET] 267

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

13.5.3 Reset Controller Mode Register

Name: RSTC_MR

Address: 0x400E1408

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

- [- T - T - T = - - —
15 14 13 12 11 10 9 8

I - I - I - I - I ERSTL |
7 6 5 4 3 2 1 0

| — | - | | URSTIEN | - | — - URSTEN |

 URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.
1 = The detection of a low level on the pin NRST triggers a User Reset.

e URSTIEN: User Reset Interrupt Enable
0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irg.
1 =USRTS bitin RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

» ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of 2ERSTH*1 Slow Clock cycles.
This allows assertion duration to be programmed between 60 us and 2 seconds.

« KEY: Write Access Password

Value Name Description

Writing any other value in this field aborts the write operation.
O0xA5 PASSWD

Always reads as 0.

268 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

14. Real-time Timer (RTT)
14.1 Description
The Real-time Timer is built around a 32-bit counter used to count roll-over events of the programmable 16-bit
prescaler which enables counting elapsed seconds from a 32 kHz slow clock source. It generates a periodic
interrupt and/or triggers an alarm on a programmed value.
It can be configured to be driven by the 1 Hz signal generated by the RTC, thus taking advantage of a calibrated 1
Hz clock.
The slow clock source can be fully disabled to reduce power consumption when RTT is not required.
14.2 Embedded Characteristics
e 32-bit Free-running Counter on prescaled slow clock or RTC calibrated 1 Hz clock
e 16-bit Configurable Prescaler
e Interrupt on Alarm
14.3 Block Diagram
Figure 14-1. Real-time Timer
RTT_MR RTT_MR RTT_MR
RTTDIS | [RTTRST | [RTPRES
RTT_MR
reload
SLCK 16-hit
Divider
0 set
RTT_MR l RTT_SR ET N ||
RTC 1Hz [RiRsT|-X\1 0/ reset
RTT_MR l I
1 0 rtt_int
RTCIHZ [\ | /] -
Counter read _
RTT SR | RTT_MR
reset
RTT_VR | CRTV |
- RTT_SR E_Ms |
= > |
set
rtt_alarm
SAM4AN8/SAM4AN16 [DATASHEET] 269

Atmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

14.4 Functional Description

The Real-time Timer can be used to count elapsed seconds. It is built around a 32-bit counter fed by Slow Clock
divided by a programmable 16-bit value. The value can be programmed in the field RTPRES of the Real-time
Mode Register (RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz signal (if the Slow
Clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to more than 136 years, then
roll over to 0.

The real-time 32-bit counter can also be supplied by the RTC 1 Hz clock. This mode is interesting when the RTC
1Hz is calibrated (CORRECTION field of RTC_MR register differs from 0) in order to guaranty the synchronism
between RTC and RTT counters.

Setting the RTC 1HZ clock to 1 in RTT_MR register allows to drive the 32-bit RTT counter with the RTC 1Hz clock.
In this mode, RTPRES field has no effect on 32-bit counter but RTTINC is still triggered by RTPRES.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best accuracy is
achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but may result in losing status
events because the status register is cleared two Slow Clock cycles after read. Thus if the RTT is configured to
trigger an interrupt, the interrupt occurs during 2 Slow Clock cycles after reading RTT_SR. To prevent several
executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and re-enabled when the
status register is clear.

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time Value Register). As
this value can be updated asynchronously from the Master Clock, it is advisable to read this register twice at the
same value to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register RTT_AR (Real-time Alarm
Register). If the counter value matches the alarm, the bit ALMS in RTT_SR is set. The alarm register is set to its
maximum value, corresponding to OxFFFF_FFFF, after a reset.

The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR register) when writing a new ALMV
value in Real-time Alarm Register.

The bit RTTINC in RTT_SR is set each time there is a prescaler roll-over, so each time the Real-time Timer
counter is incremented if RTC1HZ=0 else if RTC1HZ=1 the RTTINC bit can be triggered according to RTPRES
value, in a fully independent way from the 32-bit counter increment. This bit can be used to start a periodic
interrupt, the period being one second when the RTPRES is programmed with 0x8000 and Slow Clock equal to
32.768 Hz.

The RTTINCIEN field must be cleared prior to write a new RTPRES value in RTT_MR register.
Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the new programmed
value. This also resets the 32-bit counter.

When not used, the Real-time Timer can be disabled in order to suppress dynamic power consumption in this
module. This can be achieved by setting the RTTDIS field to 1 in RTT_MR register.

270 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 14-2. RTT Counting

RTPRES - 1

Prescaler

0

RTT

RTTINC (RTT_SR)

ALMS (RTT_SR)

APB Interface

Atmel

APB cycle

<>

=

U UUUuit

APB cycle
<>

/

/ e

ALMV-

1

ALMV

ALMV+1 ALMV+2 <ALM +3

/

read RTT_SR

SAM4N8/SAM4AN16 [DATASHEET] 271

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

14.5 Real-time Timer (RTT) User Interface

Table 14-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read-write 0x0000_8000

0x04 Alarm Register RTT_AR Read-write OxFFFF_FFFF

0x08 Value Register RTT_VR Read-only 0x0000_0000

0x0C Status Register RTT_SR Read-only 0x0000_0000
272 SAMANS/SAMAN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

14.5.1 Real-time Timer Mode Register

Name: RTT_MR

Address: 0x400E1430

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | RTCIHZ |
23 22 21 20 19 18 17 16

| — | - | - | RTTDIS | — | RTTRST | RTTINCIEN | ALMIEN |
15 14 13 12 11 10 9 8

| RTPRES |
7 6 5 4 3 2 1 0

| RTPRES |

» RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:
RTPRES = 0: The prescaler period is equal to 2'¢ * SCLK period.

RTPRES # 0: The prescaler period is equal to RTPRES * SCLK period.
Note: The RTTINCIEN field must be cleared prior to write a new RTPRES value.

e ALMIEN: Alarm Interrupt Enable
0 = The bit ALMS in RTT_SR has no effect on interrupt.
1 =The bit ALMS in RTT_SR asserts interrupt.

» RTTINCIEN: Real-time Timer Increment Interrupt Enable
0 = The bit RTTINC in RTT_SR has no effect on interrupt.
1 =The bit RTTINC in RTT_SR asserts interrupt.

* RTTRST: Real-time Timer Restart
0 = No effect.
1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

* RTTDIS: Real-time Timer Disable
0 = The real-time timer is enabled.
1 = The real-time timer is disabled (no dynamic power consumption).

* RTC1HZ: Real-Time Clock 1Hz Clock Selection
0 = The RTT 32-bit counter is driven by the 16-bit prescaler roll-over events.
1 =The RTT 32-bit counter is driven by the RTC 1 Hz clock.

SAMANS/SAMAN16 [DATASHEET 273
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

14.5.2 Real-time Timer Alarm Register

Name: RTT_AR

Address: 0x400E1434

Access: Read-write
31 30 29 28 27 26 25 24

| ALMV |
23 22 21 20 19 18 17 16

| ALMV |
15 14 13 12 11 10 9 8

| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

¢ ALMV: Alarm Value

Defines the alarm value (ALMV+1) compared with the Real-time Timer.

Note: The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR register) when writing a new ALMV
value.

274 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

14.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1438

Access: Read-only
31 30 29 28 27 26 25 24

| CRTV |
23 22 21 20 19 18 17 16

| CRTV |
15 14 13 12 11 10 9 8

| CRTV |
7 6 5 4 3 2 1 0

| CRTV |

e CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

SAMANS/SAMAN16 [DATASHEET 275
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

14.5.4 Real-time Timer Status Register

Name: RTT_SR

Address: 0x400E143C

Access: Read-only
31 30 29 28 27 26 25 24

. - r - ¢ - - - ¢ - ¢ - [- 1}
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

. - r - ¢ - - - rr - ¢ - [- /]
7 6 5 4 3 2 1 0

| - | - | - | - | - | - [RTTINC | ALMS |

* ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.
1 = The Real-time Alarm occurred since the last read of RTT_SR.

e RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.
1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

276 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15. Real-time Clock (RTC)

15.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.

It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian or Persian calendar,
complemented by a programmable periodic interrupt. The alarm and calendar registers are accessed by a 32-bit
data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format can be 24-hour
mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel capture on the 32-bit
data bus. An entry control is performed to avoid loading registers with incompatible BCD format data or with an
incompatible date according to the current month/year/century.

A clock divider calibration circuitry enables to compensate crystal oscillator frequency inaccuracy.

15.2 Embedded Characteristics
e Ultra Low Power Consumption

Full Asynchronous Design
Gregorian Calendar up to 2099 or Persian Calendar
Programmable Periodic Interrupt
Safety/security features:

— Valid Time and Date Programmation Check

— On-The-Fly Time and Date Validity Check
e Crystal Oscillator Clock Calibration

SAMANS/SAMAN16 [DATASHEET 277
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.3 Block Diagram

Figure 15-1. RTC Block Diagram

Slow Clock: SLCK

APB <=

32768 Divider

Clock Calibration

1

Time

Date

!

!

!

!

!

—>>

User Interface

Entry

Control

Alarm

Interrupt
Control

15.4 Product Dependencies

15.4.1 Power Management

RTC Interrupt

The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller has no effect on

RTC behavior.

15.4.2 Interrupt

RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the

interrupt controller to be programmed first.

278 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

15.5 Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years),
month, date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar(or 1300 to 1499 in Persian
mode).

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years). This is correct up to the year
2099.

15.5.1 Reference Clock
The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical. The crystal
selection has to take into account the current consumption for power saving and the frequency drift due to
temperature effect on the circuit for time accuracy.

15.5.2 Timing

The RTC is updated in real time at one-second intervals in nhormal mode for the counters of seconds, at one-
minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read
in the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is
necessary to read these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of
two and a maximum of three accesses are required.

15.5.3 Alarm

The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

e If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt
generated if enabled) at a given month, date, hour/minute/second.

e Ifonly the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to the user ranging
from minutes to 365/366 days.

Hour, minute and second matching alarm (SECEN, MINEN, HOUREN) can be enabled independently of SEC,

MIN, HOUR fields.

Note: To change one of the SEC, MIN, HOUR, DATE, MONTH fields, it is recommended to disable the field before changing
the value and re-enable it after the value has been changed. This requires up to 3 accesses to the RTC_TIMALR or
RTC_CALALR registers. First access to only clear the enable corresponding to the field to change (SECEN, MINEN,
HOUREN, DATEEN, MTHEN), this access is not required if the field is already cleared. The second access performs
the change of the value (SEC, MIN, HOUR, DATE, MONTH). The third access is required to re-enable the field by
writing 1 in SECEN, MINEN, HOUREN, DATEEN, MTHEN fields.

15.5.4 Error Checking when Programming

Verification on user interface data is performed when accessing the century, year, month, date, day, hours,
minutes, seconds and alarms. A check is performed on illegal BCD entries such as illegal date of the month with
regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is set in the validity
register. The user can not reset this flag. It is reset as soon as an acceptable value is programmed. This avoids
any further side effects in the hardware. The same procedure is done for the alarm.

SAMANS/SAMAN16 [DATASHEET 279
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

The following checks are performed:
1. Century (check if itis in range 19 - 20 or 13-14 in Persian mode)
Year (BCD entry check)
Date (check range 01 - 31)
Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
Day (check range 1 - 7)
Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is not set if RTC is set
in 24-hour mode; in 12-hour mode check range 01 - 12)
7. Minute (check BCD and range 00 - 59)
8. Second (check BCD and range 00 - 59)

Note: If the 12-hour mode is selected by means of the RTC_MR register, a 12-hour value can be programmed and the
returned value on RTC_TIMR will be the corresponding 24-hour value. The entry control checks the value of the
AM/PM indicator (bit 22 of RTC_TIMR register) to determine the range to be checked.

I

15.5.5 RTC Internal Free Running Counter Error Checking

To improve the reliability and security of the RTC, a permanent check is performed on the internal free running
counters to report non-BCD or invalid date/time values.

An error is reported by TDERR bit in the status register (RTC_SR) if an incorrect value has been detected. The
flag can be cleared by programming the TDERRCLR in the RTC status clear control register (RTC_SCCR).

Anyway the TDERR error flag will be set again if the source of the error has not been cleared before clearing the
TDERR flag. The clearing of the source of such error can be done either by reprogramming a correct value on
RTC_CALR and/or RTC_TIMR registers.

The RTC internal free running counters may automatically clear the source of TDERR due to their roll-over (i.e.
every 10 seconds for SECONDS[3:0] bitfield in RTC_TIMR register). In this case the TDERR is held high until a
clear command is asserted by TDERRCLR bit in RTC_SCCR register.

15.5.6 Updating Time/Calendar

To update any of the time/calendar fields, the user must first stop the RTC by setting the corresponding field in the
Control Register. Bit UPDTIM must be set to update time fields (hour, minute, second) and bit UPDCAL must be
set to update calendar fields (century, year, month, date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Register. Once the bit
reads 1, it is mandatory to clear this flag by writing the corresponding bit in RTC_SCCR. The user can now write to
the appropriate Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When entering the
programming mode of the time fields, both time and calendar fields are stopped. This is due to the location of the
calendar logic circuity (downstream for low-power considerations). It is highly recommended to prepare all the
fields to be updated before entering programming mode. In successive update operations, the user must wait at
least one second after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these
bits again. This is done by waiting for the SEC flag in the Status Register before setting UPDTIM/UPDCAL bit.
After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.

280 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 15-2. Update Sequence

Begin

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<€
Read RTC_SR
Polling or
IRQ (if enabled)
ACKUPD No
=17
Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC CR

End

SAMANS/SAMAN16 [DATASHEET 281
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.5.7 RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation.
The RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be
programmed on-the-fly and also programmed during application manufacturing, in order to correct the crystal
frequency accuracy at room temperature (20-25°C). The typical clock drift range at room temperature is £20 ppm.

In a temperature range of -40°C to +85°C, the 32.768 kHz crystal oscillator clock inaccuracy can be up to -200
ppm.

The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm. After
correction, the remaining crystal drift is as follows:

e Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 90 ppm
e Below 2 ppm, for an initial crystal drift between 90 ppm up to 130 ppm
e Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm

The calibration circuitry acts by slightly modifying the 1 Hz clock period from time to time. When the period is
modified, depending on the sign of the correction, the 1 Hz clock period increases or reduces by around 4 ms. The
period interval between 2 correction events is programmable in order to cover the possible crystal oscillator clock
variations.

The inaccuracy of a crystal oscillator at typical room temperature (20 ppm at 20-25 degrees Celsius) can be
compensated if a reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can
be set up during the final product manufacturing by means of measurement equipment embedding such a
reference clock. The correction of value must be programmed into the RTC Mode Register (RTC_MR), and this
value is kept as long as the circuitry is powered (backup area). Removing the backup power supply cancels this
calibration. This room temperature calibration can be further processed by means of the networking capability of
the target application.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if
the application can access such a reference. If a reference time cannot be used, a temperature sensor can be
placed close to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once
obtained, the temperature may be converted using a lookup table (describing the accuracy/temperature curve of
the crystal oscillator used) and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This
adjustment method is not based on a measurement of the crystal frequency/drift and therefore can be improved by
means of the networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do it. In the case
where a reference time of the day can be obtained through LAN/WAN network, it is possible to calculate the drift of
the application crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and
programming the HIGHPPM and CORRECTION bitfields on RTC_MR according to the difference measured
between the reference time and those of RTC_TIMR.

282 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6 Real-time Clock (RTC) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RTC_CR Read-write 0x0
0x04 Mode Register RTC_MR Read-write 0x0
0x08 Time Register RTC_TIMR Read-write 0x0
0x0C Calendar Register RTC_CALR Read-write 0x01A11020
0x10 Time Alarm Register RTC_TIMALR Read-write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0

0x30-0xC4 Reserved Register - - -
0xC8-0xF8 Reserved Register - - -

OxFC Reserved Register - - -

Note: If an offset is not listed in the table it must be considered as reserved.

Atmel

SAM4N8/SAM4AN16 [DATASHEET]

283

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1460

Access: Read-write
31 30 29 28 27 26 25 24

. - - ¢ - - 1 - [- [- - |
23 22 21 20 19 18 17 16

. - r - ¢ - - [- [- | CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - [TIMEVSEL |
7 6 5 4 3 2 1 0

| - | - | - | - [- [- [uPDCAL UPDTIM |

« UPDTIM: Update Request Time Register
0 = No effect.
1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.

e UPDCAL: Update Request Calendar Register
0 = No effect.
1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.

 TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon
» CALEVSEL: Calendar Event Selection

The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)

284 SAM4N8/SAM4AN16 [DATASHEET)]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Atmel

15.6.2 RTC Mode Register

Name: RTC_MR

Address: 0x400E1464

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

[HiIGHPPM | CORRECTION |
7 6 5 4 3 2 1 0

| - | - | - NEGPPM - - PERSIAN HRMOD |

« HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.
1 = 12-hour mode is selected.

 PERSIAN: PERSIAN Calendar
0 = Gregorian Calendar.
1 = Persian Calendar.

» NEGPPM: NEGative PPM Correction

0 = positive correction (the divider will be slightly lower than 32768).
1 = negative correction (the divider will be slightly higher than 32768).
Refer to CORRECTION and HIGHPPM field descriptions.

» CORRECTION: Slow Clock Correction
0 = No correction

1..127 = The slow clock will be corrected according to the formula given below in HIGHPPM description.

* HIGHPPM: HIGH PPM Correction
0 = lower range ppm correction with accurate correction.
1 = higher range ppm correction with accurate correction.

If the absolute value of the correction to be applied is lower than 30ppm, it is recommended to clear HIGHPPM. HIGHPPM
setto 1 is recommended for 30 ppm correction and above.

Formula:

If HIGHPPM = 0, then the clock frequency correction range is from 1.5 ppm up to 98 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 1.5 ppm up to 30 ppm..

The correction field must be programmed according to the required correction in ppm, the formula is as follows:

3906

CORRECTION = z—— -
20 x ppm

SAMANS/SAMAN16 [DATASHEET 285
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

The value obtained must be rounded to the nearest integer prior to being programmed into CORRECTION field.

If HIGHPPM = 1, then the clock frequency correction range is from 30.5 ppm up to 1950 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 30.5 ppm up to 90 ppm.

The correction field must be programmed according to the required correction in ppm, the formula is as follows:

3906

CORRECTION = 1
ppm

The value obtained must be rounded to the nearest integer prior to be programmed into CORRECTION field.
If NEGPPM is set to 1, the ppm correction is negative.

286 SAM4N8/SAM4AN16 [DATASHEET] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.3 RTC Time Register

Name: RTC_TIMR

Address: 0x400E1468

Access: Read-write
31 30 29 28 27 26 25 24

1 T - - - -]
23 22 21 20 19 18 17 16

| - | Avem] HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| - | SEC |

» SEC: Current Second
The range that can be set is 0 - 59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* MIN: Current Minute
The range that can be set is 0 - 59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* HOUR: Current Hour
The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

 AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.
0=AM.

1=PM.

All non-significant bits read zero.

SAMANS/SAMAN16 [DATASHEET 287
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E146C

Access: Read-write
31 30 29 28 27 26 25 24

| - | - DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| - | CENT |

e CENT: Current Century
The range that can be set is 19 - 20 (gregorian) or 13-14 (persian) (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* YEAR: Current Year
The range that can be set is 00 - 99 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* MONTH: Current Month
The range that can be setis 01 - 12 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

» DAY: Current Day in Current Week
The range that can be setis 1 - 7 (BCD).
The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

e DATE: Current Day in Current Month
The range that can be set is 01 - 31 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

288 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: 0x400E1470

Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

[HOUREN [Awpm | HOUR |
15 14 13 12 11 10 9 8

[MINEN | MIN |
7 6 5 4 3 2 1 0

| SECEN | SEC |

Note: To change one of the SEC, MIN, HOUR fields, it is recommended to disable the field before changing the value and re-enable it
after the value has been changed. This requires up to 3 accesses to the RTC_TIMALR register. First access to only clear the
enable corresponding to the field to change (SECEN, MINEN, HOUREN), this access is not required if the field is already cleared.
The second access performs the change of the value (SEC, MIN, HOUR). The third access is required to re-enable the field by
writing 1 in SECEN, MINEN, HOUREN fields.

» SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.

» SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.
1 = The second-matching alarm is enabled.

* MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

* MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.
1 = The minute-matching alarm is enabled.

* HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

« AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

* HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.
1 = The hour-matching alarm is enabled.

SAMANS/SAMAN16 [DATASHEET 289
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1474

Access: Read-write
31 30 29 28 27 26 25 24

| DATEEN | — | DATE |
23 22 21 20 19 18 17 16

[MTHEN | — | — | MONTH |
15 14 13 12 11 10 9 8

. - rr - ¢ - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

Note: To change one of the DATE, MONTH fields, it is recommended to disable the field before changing the value and re-enable it after
the value has been changed. This requires up to 3 accesses to the RTC_CALALR register. First access to only clear the enable
corresponding to the field to change (DATEEN, MTHEN), this access is not required if the field is already cleared. The second
access performs the change of the value (DATE, MONTH). The third access is required to re-enable the field by writing 1 in
DATEEN, MTHEN fields.

* MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.

* MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.
1 = The month-matching alarm is enabled.

+ DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

» DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.
1 = The date-matching alarm is enabled.

290 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1478

Access: Read-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - rr - ¢ - [- 1}
23 22 21 20 19 18 17 16

. - rr - ¢ - - r - rr - ¢ - [- 1}
15 14 13 12 11 10 9 8

. - rr - ¢ - - r - r - ¢ - [- 1}
7 6 5 4 3 2 1 0

| - | - | TErRR | cAalev | TIMEV | SEC | ALARM [AckupD |

 ACKUPD: Acknowledge for Update
0 (FREERUN) = Time and calendar registers cannot be updated.
1 (UPDATE) = Time and calendar registers can be updated.

 ALARM: Alarm Flag
0 (NO_ALARMEVENT) = No alarm matching condition occurred.
1 (ALARMEVENT) = An alarm matching condition has occurred.

» SEC: Second Event
0 (NO_SECEVENT) = No second event has occurred since the last clear.
1 (SECEVENT) = At least one second event has occurred since the last clear.

e TIMEV: Time Event
0 (NO_TIMEVENT) = No time event has occurred since the last clear.
1 (TIMEVENT) = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).

* CALEV: Calendar Event
0 (NO_CALEVENT) = No calendar event has occurred since the last clear.
1 (CALEVENT) = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.

» TDERR: Time and/or Date Free Running Error
0 (CORRECT) = The internal free running counters are carrying valid values since the last read of RTC_SR.

1 (ERR_TIMEDATE) = The internal free running counters have been corrupted (invalid date or time, non-BCD values)
since the last read and/or they are still invalid.

SAMANS/SAMAN16 [DATASHEET 291
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E147C

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | TDERRCIR | cAlctR | T7IMCLR | secctR | ALRCIR | AckclR |

* ACKCLR: Acknowledge Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

* ALRCLR: Alarm Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

» SECCLR: Second Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

e TIMCLR: Time Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

» CALCLR: Calendar Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

 TDERRCLR: Time and/or Date Free Running Error Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

292 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1480

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | TDERREN | calteN | TiMEN | seceN | ALREN | ACKEN |

» ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.
1 = The acknowledge for update interrupt is enabled.

 ALREN: Alarm Interrupt Enable
0 = No effect.
1 = The alarm interrupt is enabled.

» SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

TIMEN: Time Event Interrupt Enable
0 = No effect.
1 = The selected time event interrupt is enabled.

CALEN: Calendar Event Interrupt Enable
0 = No effect.
1 = The selected calendar event interrupt is enabled.

 TDERREN: Time and/or Date Error Interrupt Enable
0 = No effect.

1 = The time and date error interrupt is enabled.

SAMANS/SAMAN16 [DATASHEET 293
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1484

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | TDERRDIS | cabis | TivDis | secbis | AlrRDis | Ackbis |

* ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.
1 = The acknowledge for update interrupt is disabled.

e ALRDIS: Alarm Interrupt Disable
0 = No effect.
1 = The alarm interrupt is disabled.

» SECDIS: Second Event Interrupt Disable
0 = No effect.

1 = The second periodic interrupt is disabled.

» TIMDIS: Time Event Interrupt Disable
0 = No effect.
1 = The selected time event interrupt is disabled.

e CALDIS: Calendar Event Interrupt Disable
0 = No effect.
1 = The selected calendar event interrupt is disabled.

 TDERRDIS: Time and/or Date Error Interrupt Disable
0 = No effect.
e 1 =The time and date error interrupt is disabled.

294 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1488

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [— | - | caa | 1™ | sec [AR | Ack |

» ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.
1 = The acknowledge for update interrupt is enabled.

e ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.
1 = The alarm interrupt is enabled.

» SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.
1 = The second periodic interrupt is enabled.

* TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.
1 = The selected time event interrupt is enabled.

CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.
1 = The selected calendar event interrupt is enabled.

SAMANS/SAMAN16 [DATASHEET 295
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

15.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E148C

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - | - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - | - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - | - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | - | - | — | NvcalALR [NvTIMALR [Nveal | nvTiv |

* NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).
1 =RTC_TIMR has contained invalid data since it was last programmed.

NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).
1 =RTC_CALR has contained invalid data since it was last programmed.

* NVTIMALR: Non-valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).
1 =RTC_TIMALR has contained invalid data since it was last programmed.

* NVCALALR: Non-valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).
1 =RTC_CALALR has contained invalid data since it was last programmed.

296 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

16. Watchdog Timer (WDT)

16.1 Description

The Watchdog Timer (WDT) can be used to prevent system lock-up if the software becomes trapped in a
deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock around
32 kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while the
processor is in debug mode or idle mode.

16.2 Embedded Characteristics
e 12-bit key-protected programmable counter
e Watchdog Clock is independent from Processor Clock
e Provides reset or interrupt signals to the system
e Counter may be stopped while the processor is in debug state or in idle mode

16.3 Block Diagram

Figure 16-1. Watchdog Timer Block Diagram

write WDT_MR
WDT_MR
WDT_CR Wov
WDRSTT 1 $
reload —
r “\ 1 0 ;
y
12-bit Down
Counter
WDT_MR reload
WDD Current |
|_J Value < 1/128 SLCK
<=WDD

WDT_MR
A WDRSTEN

__-o

wdt_fault
(to Reset Controller)

set

D,
set reset

-

wdt_int
A
[} -

read WDT_SR reset WDFIEN
or

reset WDT_MR

SAM4N8/SAMAN16 [DATASHEET 297
Atmel [.

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

16.4 Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It is
supplied with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the
Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum
Watchdog period to be 16 seconds (with a typical Slow Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is OxFFF, corresponding to the maximum value of the counter with the
external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default
Watchdog is running at reset, i.e., at power-up. The user must either disable it (by setting the WDDIS bit in
WDT_MR) if he does not expect to use it or must reprogram it to meet the maximum Watchdog period the
application requires.

If the watchdog is restarted by writing into the WDT_CR register, the WDT_MR register must not be programmed
during a period of time of 3 slow clock periods following the WDT_CR write access. In any case, programming a
new value in the WDT_MR register automatically initiates a restart instruction.

The Watchdog Mode Register (WDT_MR) can be written only once . Only a processor reset resets it. Writing the
WDT_MR register reloads the timer with the newly programmed mode parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer underflow occurs, by
writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The Watchdog counter is then immediately
reloaded from WDT_MR and restarted, and the Slow Clock 128 divider is reset and restarted. The WDT_CR
register is write-protected. As a result, writing WDT_CR without the correct hard-coded key has no effect. If an
underflow does occur, the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the
Mode Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register (WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the Watchdog must occur
while the Watchdog counter is within a window between 0 and WDD, WDD is defined in the WatchDog Mode
Register WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD results in a
Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the WDT_SR and the “wdt_fault”
signal to the Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In
such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not
generate an error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit
WDFIEN is set in the mode register. The signal “wdt_fault” to the reset controller causes a Watchdog reset if the
WDRSTEN bit is set as already explained in the reset controller programmer Datasheet. In that case, the
processor and the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault”
signal to the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on the value
programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

298 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 16-2. Watchdog Behavior

FFF

Watchdog Error

Watchdog Underflow —

if WDRSTEN is 1

WDV

Normal behavior

ifWDRSTEN is 0

Forbidden
Window

ad

WDD

Permitted
Window

NN
\

N

N

/ ‘

o Watchdog
Fault

Atmel

WDT_CR = WDRSTT

SAM4N8/SAM4N16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

299

16.5 Watchdog Timer (WDT) User Interface

Table 16-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read-write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

300 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15 A t I I leL

16.5.1 Watchdog Timer Control Register

Name: WDT_CR
Address: 0x400E1450
Access: Write-only
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
. - r - 1 - &£ - 1 - [- [- [WORSIT |
 WDRSTT: Watchdog Restart
0: No effect.
1: Restarts the Watchdog if KEY is written to OxXA5.
e KEY: Password.
Value Name Description
OxA5 PASSWD Writing any other value in this field aborts the write operation.
SAM4NS8/SAMAN16 [DATASHEET 301
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

16.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1454

Access: Read-write Once
31 30 29 28 27 26 25 24

| [[WDIDLEHLT | WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

[wDDIS WDRPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

Note: The first write access prevents any further modification of the value of this register, read accesses remain possible.
Note: The WDD and WDV values must not be modified within a period of time of 3 slow clock periods following a restart of the watchdog

performed by means of a write access in the WDT_CR register, else the watchdog may trigger an end of period earlier than
expected.

 WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit Watchdog Counter.

 WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

 WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.
1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

« WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.
1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

 WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

 WDDBGHLT: Watchdog Debug Halt
0: The Watchdog runs when the processor is in debug state.
1: The Watchdog stops when the processor is in debug state.

302 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

« WDIDLEHLT: Watchdog Idle Halt
0: The Watchdog runs when the system is in idle mode.
1: The Watchdog stops when the system is in idle state.

« WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.
1: Disables the Watchdog Timer.

SAMANS/SAMAN16 [DATASHEET 303
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

16.5.3 Watchdog Timer Status Register

Name: WDT_SR
Address: 0x400E1458
Access Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - | - | - | - | - | - | WDERR | WDUNF |
 WDUNF: Watchdog Underflow
0: No Watchdog underflow occurred since the last read of WDT_SR.
1: At least one Watchdog underflow occurred since the last read of WDT_SR.
« WDERR: Watchdog Error
0: No Watchdog error occurred since the last read of WDT_SR.
1: At least one Watchdog error occurred since the last read of WDT_SR.
304 SAMA4NS8/SAM4AN16 [DATASHEET]
Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15 A t m eL

17. Supply Controller (SUPC)

17.1 Description

The Supply Controller (SUPC) controls the supply voltages of the system and manages the Backup Low Power
Mode. In this mode, the current consumption is reduced to a few microamps for Backup power retention. Exit from
this mode is possible on multiple wake-up sources. The SUPC also generates the Slow Clock by selecting either
the Low Power RC oscillator or the Low Power Crystal oscillator.

17.2 Embedded Characteristics
e Manages the Core Power Supply VDDCORE and the Backup Low Power Mode by Controlling the
Embedded Voltage Regulator
e A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE can Trigger a Core Reset
e Generates the Slow Clock SLCK, by Selecting Either the 22-42 kHz Low Power RC Oscillator or the 32 kHz
Low Power Crystal Oscillator
e Supports Multiple Wake-up Sources, for Exit from Backup Low Power Mode
— 16 Wake-up Inputs (including Tamper inputs), with Programmable Debouncing
— Real Time Clock Alarm
— Real Time Timer Alarm
— Supply Monitor Detection on VDDIO, with Programmable Scan Period and Voltage Threshold

SAM4N8/SAM4AN16 [DATASHEET] 305

A t | I leL Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.3 Block Diagram

Figure 17-1. Supply Controller Block Diagram

VDDIO

]

VDDOUT

D VDDIN

vr_on =VROFF / ONREG
controlled
Software Controlled
Voltage Regulator
Zero-Power Supply
Power-on Reset Controller
sm_on = I
SMSMPL control
supply PIOA/B/C —]
Monitor | s out
(Backup) —
WKUPO - WKUP15 [] >
General Purpose ADC —D
Backup Registers
rtc_nreset D
-]
stck —»| fTC rtc_alarm — DAC —D
rtt_nreset
RTT
SLCK —> rtt_alarm
on = XTALSEL
core_nreset
XTALSEL =
XIN32 Xtal 32 kHz
XOUT32 Oscillator on = !BODDIS Brownout
core_brown_out Detector
(Core)
Embedded
32kHzRC | of = IXTALSEL
Oscillator SRAM
<>
Backup Power Supply Peripherals
.)
core_nreset Reset proF_:reset a Matrix -
Contrller [PeriPh-ese €| Perphen
NRST D —> ice_nres Bridge
FSTTO-FSTT15 (Note 1) ‘ , Cortex-M
D ’ Processor
Embedded Sl
12/8/4MHz [N\ Main Clock €| Flash
RC MAINCK Master Clock
Oscillator MCK
Power
XIN D_ Xtal L > | Management
XOUT D_ Oscillator Controller
PLL
SLCK —>| Wat'chdog
Timer
Core Power Supply

Note1: FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins but are not physical

306 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

VDDIO

PIOx

ADx

ADVREF

DACOx

VDDCORE

Atmel

17.4 Supply Controller Functional Description

17.4.1 Supply Controller Overview

The device can be divided into two power supply areas:

e The Backup VDDIO Power Supply: including the Supply Controller, a part of the Reset Controller, the Slow
Clock switch, the General Purpose Backup Registers, the Supply Monitor and the Clock which includes the
Real Time Timer and the Real Time Clock

e The Core Power Supply: including the other part of the Reset Controller, the Brownout Detector, the
Processor, the SRAM memory, the FLASH memory and the Peripherals

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC intervenes when
the VDDIO power supply rises (when the system is starting) or when the Backup Low Power Mode is entered.

The SUPC also integrates the Slow Clock generator which is based on a 32 kHz crystal oscillator and an
embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the
crystal oscillator and select it as the Slow Clock source.

The Supply Controller and the VDDIO power supply have a reset circuitry based on a zero-power power-on reset
cell. The zero-power power-on reset allows the SUPC to start properly as soon as the VDDIO voltage becomes
valid.

At start-up of the system, once the backup voltage VDDIO is valid and the embedded 32 kHz RC oscillator is
stabilized, the SUPC starts up the core by sequentially enabling the internal Voltage Regulator, waiting that the
core voltage VDDCORE is valid, then releasing the reset signal of the core “vddcore_nreset” signal.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If the supply
monitor detects a voltage on VDDIO that is too low, the SUPC can assert the reset signal of the core
“vddcore_nreset” signal until VDDIO is valid. Likewise, if the brownout detector detects a core voltage VDDCORE
that is too low, the SUPC can assert the reset signal “vddcore_nreset” until VDDCORE is valid.

When the Backup Low Power Mode is entered, the SUPC sequentially asserts the reset signal of the core power
supply “vddcore_nreset” and disables the voltage regulator, in order to supply only the VDDIO power supply. In
this mode the current consumption is reduced to a few microamps for Backup part retention. Exit from this mode is
possible on multiple wake-up sources including an event on WKUP pins, or a Clock alarm. To exit this mode, the
SUPC operates in the same way as system start-up.

17.4.2 Slow Clock Generator

The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as
the VDDIO is supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the
embedded RC oscillator is enabled. This allows the slow clock to be valid in a short time (about 100 ps).

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate
frequency. The command is made by writing the Supply Controller Control Register (SUPC_CR) with the
XTALSEL bit at 1.This results in a sequence which first configures the P10 lines multiplexed with XIN32 and
XOUT32 to be driven by the oscillator, then enables the crystal oscillator, then counts a number of slow RC
oscillator clock periods to cover the start-up time of the crystal oscillator (refer to electrical characteristics for
details of 32KHz crystal oscillator start-up time), then switches the slow clock on the output of the crystal oscillator
and then disables the RC oscillator to save power. The switching time may vary according to the slow RC oscillator
clock frequency range. The switch of the slow clock source is glitch free. The OSCSEL bit of the Supply Controller
Status Register (SUPC_SR) allows knowing when the switch sequence is done.

Coming back on the RC oscillator is only possible by shutting down the VDDIO power supply.
If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left unconnected.

The user can also set the crystal oscillator in bypass mode instead of connecting a crystal. In this case, the user
has to provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are given in the

SAMANS/SAMAN16 [DATASHEET 307
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

product electrical characteristics section. In order to set the bypass mode, the OSCBYPASS bit of the Supply
Controller Mode Register (SUPC_MR) needs to be set at 1.

17.4.3 Core Voltage Regulator Control/Backup Low Power Mode
The Supply Controller can be used to control the embedded voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current. Please
refer to the electrical characteristics section.

The programmer can switch off the voltage regulator, and thus put the device in Backup mode, by writing the
Supply Controller Control Register (SUPC_CR) with the VROFF bit at 1.

This asserts the vddcore_nreset signal after the write resynchronization time which lasts, in the worse case, two
slow clock cycles. Once the vddcore_nreset signal is asserted, the processor and the peripherals are stopped one
slow clock cycle before the core power supply shuts off.

When the user does not use the internal voltage regulator and wants to supply VDDCORE by an external supply, it
is possible to disable the voltage regulator. This is done through ONREG bit in SUPC_MR.

17.4.4 Supply Monitor

The Supply Controller embeds a supply monitor which is located in the VDDIO Power Supply and which monitors
VDDIO power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state if the Main power
supply drops below a certain level.

The threshold of the supply monitor is programmable. It can be selected from 1.9V to 3.4V by steps of 100 mV.
This threshold is programmed in the SMTH field of the Supply Controller Supply Monitor Mode Register
(SUPC_SMMR).

The supply monitor can also be enabled during one slow clock period on every one of either 32, 256 or 2048 slow
clock periods, according to the choice of the user. This can be configured by programming the SMSMPL field in
SUPC_SMMR.

Enabling the supply monitor for such reduced times allows to divide the typical supply monitor power consumption
respectively by factors of 32, 256 or 2048, if the user does not need a continuous monitoring of the VDDIO power
supply.

A supply monitor detection can either generate a reset of the core power supply or a wake-up of the core power
supply. Generating a core reset when a supply monitor detection occurs is enabled by writing the SMRSTEN bit to
1in SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by programming the
SMEN bit to 1 in the Supply Controller Wake-up Mode Register (SUPC_WUMR).

The Supply Controller provides two status bits in the Supply Controller Status Register for the supply monitor
which allows to determine whether the last wake-up was due to the supply monitor:
e The SMOS bit provides real time information, which is updated at each measurement cycle or updated at
each Slow Clock cycle, if the measurement is continuous.
e The SMS bit provides saved information and shows a supply monitor detection has occurred since the last
read of SUPC_SR.

The SMS bit can generate an interrupt if the SMIEN bit is set to 1 in the Supply Controller Supply Monitor Mode
Register (SUPC_SMMR).

308 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 17-2. Supply Monitor Status Bit and Associated Interrupt
Continuous Sampling (SMSMPL = 1)

|

e e e e e e m e e e e e e e e e E e e e e e e e e e e e e e e e = = e = = = = -
Supply Monitor ON ! |__| | |k Periodic Sampling | |

|

|

|

T

3.3V

|
Threshold r\
N

| .

|
|
|
I
|
|
|

|

|

|

|
oV —

|

l lRead SUPC_SR

|

|

|

|

.

SMS and SUPC interrupt

17.4.5 Backup Power Supply Reset

17.4.5.1 Raising the Backup Power Supply

As soon as the backup voltage VDDIO rises, the RC oscillator is powered up and the zero-power power-on reset
cell maintains its output low as long as VDDIO has not reached its target voltage. During this time, the Supply
Controller is entirely reset. When the VDDIO voltage becomes valid and zero-power power-on reset signal is
released, a counter is started for 5 slow clock cycles. This is the time it takes for the 32 kHz RC oscillator to
stabilize.

After this time,the voltage regulator is enabled. The core power supply rises and the brownout detector provides
the bodcore_in signal as soon as the core voltage VDDCORE is valid. This results in releasing the vddcore_nreset
signal to the Reset Controller after the bodcore_in signal has been confirmed as being valid for at least one slow
clock cycle.

SAMANS/SAMAN16 [DATASHEET 309
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 17-3. Raising the VDDIO Power Supply

7 x Slow Clock Cycles TonVoltage 3 xSlow Clock 2 x Slow Clock 6.5 x Slow Clock

(5 for startup slow RC + 2 for synchro,) , Regulator, Cycles Cycles Cycles
| |

| Zero-Power POR
Backup Power Supply .

gipipipEpEpE NN NN

Zero-Power Power-On '

|

|

|

|

| Il
| |
|

|

|

L

|

|

Reset Cell output

|*.
P |
|
22 -42 kHz RC / ||| Il I”l Il !
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|

Oscillator output

I
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

vr_on

T

Core Power Supply

Fast RC
Oscillator output

bodcore_in

vddcore_nreset

\ ! RSTCERSTL ! |
| default =2 I

NRST
(no ext. drive assumed)

|

|

|

|

|

|

| | I

| I
periph_nreset l 1 I
T |
| I
| I
| I

proc_nreset

Note: After “proc_nreset”rising, the core starts fetching instructions from Flash at 4 MHz.

17.4.6 Core Reset

The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described previously in
Section 17.4.5 “Backup Power Supply Reset”. The vddcore_nreset signal is normally asserted before shutting
down the core power supply and released as soon as the core power supply is correctly regulated.
There are two additional sources which can be programmed to activate vddcore_nreset:

e a supply monitor detection

e a brownout detection

17.4.6.1 Supply Monitor Reset

The supply monitor is capable of generating a reset of the system. This can be enabled by setting the SMRSTEN
bit in the Supply Controller Supply Monitor Mode Register (SUPC_SMMR).

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is immediately activated for
a minimum of 1 slow clock cycle.

310 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.4.6.2 Brownout Detector Reset

The brownout detector provides the bodcore_in signal to the SUPC which indicates that the voltage regulation is
operating as programmed. If this signal is lost for longer than 1 slow clock period while the voltage regulator is
enabled, the Supply Controller can assert vddcore_nreset. This feature is enabled by writing the bit, BODRSTEN
(Brownout Detector Reset Enable) to 1 in the Supply Controller Mode Register (SUPC_MR).

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the vddcore_nreset
signal is asserted for a minimum of 1 slow clock cycle and then released if bodcore_in has been reactivated. The
BODRSTS bit is set in the Supply Controller Status Register (SUPC_SR) so that the user can know the source of
the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

17.4.7 Wake-up Sources

The wake-up events allow the device to exit backup mode. When a wake-up event is detected, the Supply
Controller performs a sequence which automatically reenables the core power supply.

Figure 17-4. Wake-up Sources

SMEN ™~
smout _ ——— |)
RTCEN N
rtc_alarm I J
RTTEN N
rtt_alarm ___ ———————— |
T
LPDBCEN1 - L lm
Low/High
Level Detect Debouncer -
RTCOUTO Supply
Low/High |_>> LPDfCSO Restart
Level Detect Debouncer ®
WKUPTO
[wiupeno | [wkupiso |
Low/High WKUPDBC
wkoro [-] Lowmish *
SLCK WKUPS
WKUPT1 [wkupent | [wkupist | L. 1
| Debouncer ®
——>
Low/High
WKUP1 I_—_II Level Detect
1
1
1
: WKUPT15 [wupents | [wiupists |
1
1

Low/High
WKUP15 D— Level Detect

17.4.7.1 Wake-up Inputs

The wake-up inputs, WKUPO to WKUP15, can be programmed to perform a wake-up of the core power supply.
Each input can be enabled by writing to 1 the corresponding bit, WKUPENO to WKUPEN 15, in the Wake-up
Inputs Register (SUPC_WUIR). The wake-up level can be selected with the corresponding polarity bit, WKUPPLO
to WKUPPL15, also located in SUPC_WUIR.

SAMANS/SAMAN16 [DATASHEET 311
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

All the resulting signals are wired-ORed to trigger a debounce counter, which can be programmed with the
WKUPDBC field in the Supply Controller Wake-up Mode Register (SUPC_WUMR). The WKUPDBC field can
select a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock cycles. This corresponds respectively to
about 100 ps, about 1 ms, about 16 ms, about 128 ms and about 1 second (for a typical slow clock frequency of 32
kHz). Programming WKUPDBC to 0x0 selects an immediate wake-up, i.e., an enabled WKUP pin must be active
according to its polarity during a minimum of one slow clock period to wake up the core power supply.

If an enabled WKUP pin is asserted for a time longer than the debouncing period, a wake-up of the core power
supply is started and the signals, WKUPO to WKUP15 as shown in Figure 17-4, are latched in the Supply
Controller Status Register (SUPC_SR). This allows the user to identify the source of the wake-up, however, if a
new wake-up condition occurs, the primary information is lost. No new wake-up can be detected since the primary
wake-up condition has disappeared.

17.4.7.2 Low-power Debouncer Inputs

It is possible to generate a waveform (RTCOUTO) in all modes (including backup mode). It can be useful to control
an external sensor and/or tampering function without waking up the processor. Please refer to the RTC section for
waveform generation.

Two separate debouncers are embedded for WKUPO and WKUP1 inputs.

The WKUPO and/or WKUP1 inputs can be programmed to perform a wake-up of the core power supply with a
debouncing done by RTCOUTO.

These inputs can be also used when VDDCORE is powered to get tamper detection function with a low power
debounce function.

This can be enabled by setting LPDBCO bit and/or LPDBCL1 bit in SUPC_WUMR.

In this mode of operation, WKUPO and/or WKUP1 must not be configured to also act as debouncing source for the
WKUPDBC counter (WKUPENO and/or WKUPEN1 must be cleared in SUPC_WUIR). Refer to Figure 17-4.

This mode of operation requires the RTC Output (RTCOUTO) to be configured to generate a duty cycle
programmable pulse (i.e. OUTO = 0x7 in RTC_MR) in order to create the sampling points of both debouncers. The
sampling point is the falling edge of the RTCOUTO waveform.

Figure 17-5 shows an example of an application where two tamper switches are used. RTCOUTO powers the
external pull-up used by the tampers.

Figure 17-5. Low Power Debouncer (Push-to-Make switch, pull-up resistors)

AT91SAM
J-l ” < RTCOUTO
Pull-Up
Resistor
‘ > WKUPO
= \"> pUp
Resistor
GND WKUPL
\O N
GND
GND

312 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 17-6. Low Power Debouncer (Push-to-Break switch, pull-down resistors)

AT91SAM
J-l ” RTCOUTO
<_ —_—
»| WKUPO
(_ —_—
WKUWPL
Pull-Down J_
Resistors GND
GND GND

The debouncing parameters can be adjusted and are shared (except the wake-up input polarity) by both
debouncers. The number of successive identical samples to wake up the core can be configured from 2 up to 8 in
the LPDBC field of SUPC_WUMR. The period of time between 2 samples can be configured by programming the
TPERIOD field in the RTC_MR register.

Power parameters can be adjusted by modifying the period of time in the THIGH field in RTC_MR.

The wake-up polarity of the inputs can be independently configured by writing WKUPTO and WKUPT1 fields in
SUPC_WUMR.

In order to determine which wake-up pin triggers the core wake-up or simply which debouncer triggers an event
(even if there is no wake-up, so when VDDCORE is powered on), a status flag is associated for each low power
debouncer. These 2 flags can be read in the SUPC_SR.

A debounce event can perform an immediate clear (O delay) on first half the general purpose backup registers
(GPBR). The LPDBCCLR bit must be set to 1 in SUPC_MR.

Please note that it is not mandatory to use the RTCOUT pins when using the WKUPO/WKUPL1 pins as tampering
inputs (TMPO/TMP1) in backup mode or any other modes. Using RTCOUTO pins provides a “sampling mode” to
further reduce the power consumption in low power modes. However the RTC must be configured in the same
manner as RTCOUTO is used in order to create a sampling point for the debouncer logic.

Figure 17-7 shows how to use WKUPO/WKUP1 without RTCOUT pins.

SAMANS/SAMAN16 [DATASHEET 313
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 17-7. Using WKUPO/WKUP1 without RTCOUT Pins

VDD
AT91SAM
RTCOUTO
Pull-Up
Resistor
l »| WKUPO
-\~ > Pull-Up
Resistor
GND WKUP1
_\% 1
GND

17.4.7.3 Low-power Tamper Detection Inputs
WKUPO and WKUP1 can be used as tamper detect inputs.
In Backup Mode they can be used also to wake up the core.

If a tamper is detected, it performs an immediate clear (O delay) on first half the general purpose backup registers
(GPBR).

Refer to “Wake-up Sources” on page 311 for more details.
17.4.7.4Clock Alarms

The RTC and the RTT alarms can generate a wake-up of the core power supply. This can be enabled by writing
respectively, the bits RTCEN and RTTEN to 1 in the Supply Controller Wake-up Mode Register (SUPC_WUMR).

The Supply Controller does not provide any status as the information is available in the User Interface of either the
Real Time Timer or the Real Time Clock.

17.4.7.5 Supply Monitor Detection

The supply monitor can generate a wake-up of the core power supply. See Section 17.4.4 “Supply Monitor”.

314 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15 A t I I IeL

17.5 Supply Controller (SUPC) User Interface

The User Interface of the Supply Controller is part of the System Controller User Interface.

17.5.1 System Controller (SYSC) User Interface

Table 17-1. System Controller Registers

Offset System Controller Peripheral Name
0x00-0x0c Reset Controller RSTC
0x10-0x2C Supply Controller SUPC
0x30-0x3C Real Time Timer RTT
0x50-0x5C Watchdog Timer WDT
0x60-0x8C Real Time Clock RTC
0x90-0xDC General Purpose Backup Register GPBR

OxEO Reserved

OxE4 Write Protect Mode Register SYSC_WPMR
OxE8-0xF8 Reserved

17.5.2 Supply Controller (SUPC) User Interface

Table 17-2. Register Mapping

Offset Register Name Access Reset
0x00 Supply Controller Control Register SUPC_CR Write-only N/A
0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read-write 0x0000_0000
0x08 Supply Controller Mode Register SUPC_MR Read-write 0x0000_5A00
0x0C Supply Controller Wake-up Mode Register SUPC_WUMR Read-write 0x0000_0000
0x10 Supply Controller Wake-up Inputs Register SUPC_WUIR Read-write 0x0000_0000
0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0000
0x18 Reserved

SAMANS/SAMAN16 [DATASHEET 315
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.5.3 Supply Controller Control Register

Name: SUPC_CR

Address: 0x400E1410

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - | - - I - I - | - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | XTALSEL | VROFF | - | - |

* VROFF: Voltage Regulator Off
0 (NO_EFFECT) = no effect.
1 (STOP_VREG) = if KEY is correct, asserts the vddcore_nreset and stops the voltage regulator.

e XTALSEL: Crystal Oscillator Select
0 (NO_EFFECT) = no effect.
1 (CRYSTAL_SEL) = if KEY is correct, switches the slow clock on the crystal oscillator output.

 KEY: Password

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

316 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.5.4 Supply Controller Supply Monitor Mode Register

Name: SUPC_SMMR

Address: 0x400E1414

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | SMIEN |SMRSTEN| - | SMSMPL |
7 6 5 4 3 2 1 0

I - I - I - I - I SMTH |

* SMTH: Supply Monitor Threshold
Allows to select the threshold voltage of the supply monitor. Refer to electrical characteristics for voltage values.

e SMSMPL: Supply Monitor Sampling Period

Value Name Description
0x0 SMD Supply Monitor disabled
0x1 CSM Continuous Supply Monitor
0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods
0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods
0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods

« SMRSTEN: Supply Monitor Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a supply monitor detection occurs.
1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.

e SMIEN: Supply Monitor Interrupt Enable
0 (NOT_ENABLE) = the SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE) = the SUPC interrupt signal is asserted when a supply monitor detection occurs.

SAMANS/SAMAN16 [DATASHEET 317
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.5.5 Supply Controller Mode Register

Name: SUPC_MR

Address: 0x400E1418

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

| - | - | - | OSCBYPASS | — | - | - | - |
15 14 13 12 11 10 9 8

| | ONREG | BODDIS | BODRSTEN | - | - | - | — |
7 6 5 4 3 2 1 0

» BODRSTEN: Brownout Detector Reset Enable
0 (NOT_ENABLE) = the core reset signal “vddcore_nreset” is not affected when a brownout detection occurs.

1 (ENABLE) = the core reset signal, vddcore_nreset is asserted when a brownout detection occurs.

+ BODDIS: Brownout Detector Disable
0 (ENABLE) = the core brownout detector is enabled.
1 (DISABLE) = the core brownout detector is disabled.

* ONREG: Voltage Regulator enable
0 (ONREG_UNUSED) = Internal voltage regulator is not used (external power supply is used)
1 (ONREG_USED) = internal voltage regulator is used

*» OSCBYPASS: Oscillator Bypass
0 (NO_EFFECT) = no effect. Clock selection depends on XTALSEL value.
1 (BYPASS) = the 32-KHz XTAL oscillator is selected and is put in bypass mode.

» KEY: Password Key

Value Name Description

O0xA5 PASSWD Writing any other value in this field aborts the write operation.

318 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.5.6 Supply Controller Wake-up Mode Register

Name: SUPC_WUMR

Address: 0x400E141C

Access: Read-write
31 30 29 28 27 26 25 24

- T - T - T - T -1 - - —]
23 22 21 20 19 18 17 16

I - I - I - I - I - I LPDBC |
15 14 13 12 11 10 9 8

| - | WKUPDBC | — | - | - | - |
7 6 5 4 3 2 1 0

| LPDBCCLR | LPDBCEN1 | LPDBCENO | - | RTCEN | RTTEN | SMEN | - |

* SMEN: Supply Monitor Wake-up Enable
0 (NOT_ENABLE) = the supply monitor detection has no wake-up effect.
1 (ENABLE) = the supply monitor detection forces the wake-up of the core power supply.

e RTTEN: Real Time Timer Wake-up Enable
0 (NOT_ENABLE) =the RTT alarm signal has no wake-up effect.
1 (ENABLE) = the RTT alarm signal forces the wake-up of the core power supply.

 RTCEN: Real Time Clock Wake-up Enable
0 (NOT_ENABLE) = the RTC alarm signal has no wake-up effect.
1 (ENABLE) = the RTC alarm signal forces the wake-up of the core power supply.

 LPDBCENO: Low power Debouncer ENable WKUPO
0 (NOT_ENABLE) = the WKUPO input pin is not connected with low power debouncer.
1 (ENABLE) = the WKUPO input pin is connected with low power debouncer and can force a core wake-up.

« LPDBCENL1: Low power Debouncer ENable WKUP1
0 (NOT_ENABLE) = the WKUP1linput pin is not connected with low power debouncer.
1 (ENABLE) = the WKUPL1 input pin is connected with low power debouncer and can force a core wake-up.

 LPDBCCLR: Low power Debouncer Clear
0 (NOT_ENABLE) = a low power debounce event does not create an immediate clear on first half GPBR registers.

1 (ENABLE) = a low power debounce event on WKUPO or WKUPL1 generates an immediate clear on first half GPBR
registers.

SAMANS/SAMAN16 [DATASHEET 319
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

+ WKUPDBC: Wake-up Inputs Debouncer Period

Value Name Description
0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.
1 3_SCLK WKUPXx shall be in its active state for at least 3 SLCK periods
2 32_SCLK WKUPXx shall be in its active state for at least 32 SLCK periods
3 512_SCLK WKUPXx shall be in its active state for at least 512 SLCK periods
4 4096_SCLK WKUPXx shall be in its active state for at least 4,096 SLCK periods
5 32768_SCLK WKUPX shall be in its active state for at least 32,768 SLCK periods
6 Reserved Reserved
7 Reserved Reserved

« LPDBC: Low Power DeBounCer Period

Value Name Description

0 DISABLE Disable the low power debouncer.

1 2_RTCOUTO WKUPO/1 in its active state for at least 2 RTCOUTO periods
2 3_RTCOUTO WKUPO/1 in its active state for at least 3 RTCOUTO periods
3 4 RTCOUTO WKUPO/1 in its active state for at least 4 RTCOUTO periods
4 5_RTCOUTO WKUPO/1 in its active state for at least 5 RTCOUTO periods
5 6_RTCOUTO WKUPO/1 in its active state for at least 6 RTCOUTO periods
6 7_RTCOUTO WKUPO/1 in its active state for at least 7 RTCOUTO periods
7 8 RTCOUTO WKUPO/1 in its active state for at least 8 RTCOUTO periods

320 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.5.7 System Controller Wake-up Inputs Register

Name: SUPC_WUIR

Address: 0x400E1420

Access: Read-write
31 30 29 28 27 26 25 24

| WKUPT15 | WKUPT14 | WKUPT13 | WKUPT12 | WKUPT11 | WKUPT10 | WKUPT9 | WKUPTS8 |
23 22 21 20 19 18 17 16

| WKUPT7 | WKUPT6 | WKUPT5 | WKUPT4 | WKUPT3 | WKUPT2 | WKUPT1 | WKUPTO |
15 14 13 12 11 10 9 8

| WKUPEN15 | WKUPEN14 | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPENS8 |

7 6 5 4 3 2 1 0
| WKUPEN7 | WKUPENG6 | WKUPEN5 | WKUPEN4 | WKUPEN3 | WKUPEN2 | WKUPEN1 | WKUPENO |

« WKUPENO - WKUPEN15: Wake-up Input Enable 0 to 15
0 (DISABLE) = the corresponding wake-up input has no wake-up effect.
1 (ENABLE) = the corresponding wake-up input forces the wake-up of the core power supply.

« WKUPTO - WKUPT15: Wake-up Input Type 0 to 15

0 (LOW) = a low level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake-up of the
core power supply.

1 (HIGH) = a high level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake-up of the
core power supply.

SAMANS/SAMAN16 [DATASHEET 321
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.5.8 Supply Controller Status Register

Name: SUPC_SR

Address: 0x400E1424

Access: Read-only
31 30 29 28 27 26 25 24

| WKUPIS15 | WKUPIS14 | WKUPIS13 | WKUPIS12 | WKUPIS11 | WKUPIS10 | WKUPIS9 | WKUPIS8 |
23 22 21 20 19 18 17 16

| WKUPIS7 | WKUPIS6 | WKUPIS5 | WKUPIS4 | WKUPIS3 | WKUPIS2 | WKUPIS1 | WKUPISO |
15 14 13 12 11 10 9 8

| - | LPDBCS1 | LPDBCSO | - | - | - | - | - |
7 6 5 4 3 2 1 0

| OSCSEL | SMOS | SMS | SMRSTS | BODRSTS | SMWS | WKUPS | - |

Note: Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK), the status register flag reset is taken
into account only 2 slow clock cycles after the read of the SUPC_SR.

« WKUPS: WKUP Wake-up Status

0 (NO) = no wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake-up due to the assertion of the WKUP pins has occurred since the last read of
SUPC_SR.

« SMWS: Supply Monitor Detection Wake-up Status
0 (NO) = no wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

« BODRSTS: Brownout Detector Reset Status
0 (NO) = no core brownout rising edge event has been detected since the last read of the SUPC_SR.
1 (PRESENT) = at least one brownout output rising edge event has been detected since the last read of the SUPC_SR.

When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detec-
tion cell. The rising edge event occurs only when there is a voltage transition below the threshold.

* SMRSTS: Supply Monitor Reset Status
0 (NO) = no supply monitor detection has generated a core reset since the last read of the SUPC_SR.
1 (PRESENT) = at least one supply monitor detection has generated a core reset since the last read of the SUPC_SR.

e SMS: Supply Monitor Status
0 (NO) = no supply monitor detection since the last read of SUPC_SR.
1 (PRESENT) = at least one supply monitor detection since the last read of SUPC_SR.

* SMOS: Supply Monitor Output Status
0 (HIGH) = the supply monitor detected VDDIO higher than its threshold at its last measurement.
1 (LOW) = the supply monitor detected VDDIO lower than its threshold at its last measurement.

322 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

* OSCSEL: 32-kHz Oscillator Selection Status
0 (RC) = the slow clock, SLCK is generated by the embedded 32-kHz RC oscillator.
1 (CRYST) = the slow clock, SLCK is generated by the 32-kHz crystal oscillator.

« LPDBCSO: Low Power Debouncer Wake-up Status on WKUPO
0 (NO) = no wake-up due to the assertion of the WKUPO pin has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake-up due to the assertion of the WKUPO pin has occurred since the last read of
SUPC_SR.

« LPDBCS1: Low Power Debouncer Wake-up Status on WKUP1
0 (NO) = no wake-up due to the assertion of the WKUP1 pin has occurred since the last read of SUPC_SR.

1 (PRESENT) = at least one wake-up due to the assertion of the WKUP1 pin has occurred since the last read of
SUPC_SR.

« WKUPISO-WKUPIS15: WKUP Input Status 0to 15

0 (DIS) = the corresponding wake-up input is disabled, or was inactive at the time the debouncer triggered a wake-up
event.

1 (EN) = the corresponding wake-up input was active at the time the debouncer triggered a wake-up event.

SAMANS/SAMAN16 [DATASHEET 323
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

17.5.9 System Controller Write Protect Mode Register

Name: SYSC_WPMR

Access: Read-write
31 30 29 28 27 26 25 24

| WPKEY |
23 22 21 20 19 18 17 16

| WPKEY |
15 14 13 12 11 10 9 8

| WPKEY |
7 6 5 4 3 2 1 0

- 1T - 1T = - - - - WPEN |

« WPEN:

0: The Write Protection is disabled.
1: The Write Protection is enabled.
LList of the write-protected registers:
RSTC Mode Register

RTT Mode Register

RTT Alarm Register

RTC Control Register

RTC Mode Register

RTC Time Alarm Register

RTC Calendar Alarm Register
General Purpose Backup Registers
SUPC Control Register

SUPC Supply Monitor Mode Register
SUPC Mode Register

SUPC Wake-up Mode Register
SUPC Wake-up Input Mode Register

« WPKEY:..
Value Name Description
Writing any other value in this field aborts the write operation of the WPEN bit.
0x525443 PASSWD
Always reads as 0.

324 SAM4N8/SAM4AN16 [DATASHEET)] /ItmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

18. General Purpose Backup Registers (GPBR)

18.1 Description
The System Controller embeds Eight general-purpose backup registers.

It is possible to generate an immediate clear of the content of general-purpose backup registers 0 to 3 (first half), if
a low power debounce event is detected on a wakeup pin, WKUPO or WKUP1. The content of the other general-
purpose backup registers (second half) remains unchanged.

To enter this mode of operation, the supply controller module must be programmed accordingly. In supply
controller SUPC_WUMR register, LPDBCCLR, LPDBCENO and/or LPDBCEN1 bit must be configured to 1 and
LPDBC must be other than 0.

If a tamper event has been detected, it is not possible to write into general-purpose backup registers while the
LPDBCSO0 or LPDBCS1 flags are not cleared in supply controller status register SUPC_SR.

18.2 Embedded Characteristics
e Eight 32-bit General Purpose Backup Registers

SAMANS/SAMAN16 [DATASHEET 325
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

18.3 General Purpose Backup Registers (GPBR) User Interface

Table 18-1. Register Mapping

Offset Register Name Access Reset
0x0 General Purpose Backup Register 0 SYS_GPBRO Read-write -
0x1C General Purpose Backup Register 7 SYS_GPBR7 Read-write -

326 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

18.3.1 General Purpose Backup Register x

Name: SYS_GPBRX

Address: Ox400E1490 [0] .. 0x400E14AC [7]

Access: Read-write
31 30 28 27 26 25 24

| GPBR_VALUE |
23 22 20 19 18 17 16

| GPBR_VALUE |
15 14 12 11 10 9 8

| GPBR_VALUE |
7 6 4 3 2 1 0

| GPBR_VALUE |

* GPBR_VALUE: Value of GPBR x

If a tamper event has been detected, it is not possible to write GPBR_VALUE while the LPDBCSO0 or LPDBCS1
flags are not cleared in supply controller status register SUPC_SR.

Atmel

SAM4N8/SAM4AN16 [DATASHEET] 327

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

19. Embedded Flash Controller (EFC)

19.1 Description

The Enhanced Embedded Flash Controller (EEFC) ensures the interface of the Flash block with the 32-bit internal
bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the programming, erasing,
locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the
embedded Flash descriptor definition that informs the system about the Flash organization, thus making the
software generic.

19.2 Embedded Characteristics

Interface of the Flash Block with the 32-bit Internal Bus
Increases Performance in Thumb2 Mode with 128-bit or -64 bit Wide Memory Interface up to 80 MHz
Code loops optimization

128 Lock Bits, Each Protecting a Lock Region
GPNVMx General-purpose GPNVM Bits

One-by-one Lock Bit Programming

Commands Protected by a Keyword

Erases the Entire Flash

Erases by Plane

Erase by Sector

Erase by Pages

Possibility of Erasing before Programming

Locking and Unlocking Operations

Possibility to read the Calibration Bits

19.3 Product Dependencies

19.3.1 Power Management

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Management Controller
has no effect on its behavior.

19.3.2 Interrupt Sources

The Enhanced Embedded Flash Controller (EEFC) interrupt line is connected to the Nested Vectored Interrupt
Controller (NVIC). Using the Enhanced Embedded Flash Controller (EEFC) interrupt requires the NVIC to be
programmed first. The EEFC interrupt is generated only on FRDY bit rising.

Table 19-1. Peripheral IDs

Instance ID

EFC 6

328 SAM4N8/SAM4AN16 [DATASHEET)] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

19.4 Functional Description

19.4.1 Embedded Flash Organization

The embedded Flash interfaces directly with the 32-bit internal bus. The embedded Flash is composed of:

e One memory plane organized in several pages of the same size.

e Two 128-bit or 64-bit read buffers used for code read optimization.

e One 128-bit or 64-bit read buffer used for data read optimization.

e One write buffer that manages page programming. The write buffer size is equal to the page size. This buffer
is write-only and accessible all along the 1 MByte address space, so that each word can be written to its final
address.

e Several lock bits used to protect write/erase operation on several pages (lock region). A lock bit is
associated with a lock region composed of several pages in the memory plane.

e Several bits that may be set and cleared through the Enhanced Embedded Flash Controller (EEFC)
interface, called General Purpose Non Volatile Memory bits (GPNVM bits).

The embedded Flash size, the page size, the lock regions organization and GPNVM bits definition are specific to
the product. The Enhanced Embedded Flash Controller (EEFC) returns a descriptor of the Flash controlled after a
get descriptor command issued by the application (see “Getting Embedded Flash Descriptor” on page 335).

Figure 19-1. Embedded Flash Organization

Memory Plane

.. e
Start Address —
Lock Region 0 <— Lock Bit0
Page (m-1)
D SLTTITCRTITY
Lock Region 1 <—— LockBit1l
X
Lock Region (n-1) <«—— Lock Bit (n-1)
Start Address + Flash size -1 Page (1)

19.4.2 Read Operations

An optimized controller manages embedded Flash reads, thus increasing performance when the processor is
running in Thumb2 mode by means of the 128- or 64- bit wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area, the embedded
Flash wraps around the address space and appears to be repeated within it.

SAMANS/SAMAN16 [DATASHEET 329
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

The read operations can be performed with or without wait states. Wait states must be programmed in the field
FWS (Flash Read Wait State) in the Flash Mode Register (EEFC_FMR). Defining FWS to be 0 enables the single-
cycle access of the embedded Flash. Refer to the Electrical Characteristics for more details.

19.4.2.1 128-bit or 64-bit Access Mode

By default the read accesses of the Flash are performed through a 128-bit wide memory interface. It enables
better system performance especially when 2 or 3 wait state needed.

For systems requiring only 1 wait state, or to privilege current consumption rather than performance, the user can
select a 64-bit wide memory access via the FAM bit in the Flash Mode Register (EEFC_FMR)

Please refer to the electrical characteristics section of the product datasheet for more details.

19.4.2.2 Code Read Optimization
This feature is enabled if the EEFC_FMR register bit SCOD is cleared.

A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential Code Fetch.
Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

The sequential code read optimization is enabled by default. If the bit SCOD in Flash Mode Register (EEFC_FMR)
is set to 1, these buffers are disabled and the sequential code read is not optimized anymore.

Another system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize loop code fetch (see “Code Loops
Optimization” on page 331).

Figure 19-2. Code Read Optimization for FWS =0

Master Clock J | | | | | | | | | | | | | | | I_
v A N N N N M M |

@Byte 0 @Byte 4 @Byte 8 @Byte 12 @Byte16 @Byte20 @Byte 24 @Byte 28 @Byte 32

Flash Access X Bytes 0-15 X Bytes 16-31 X X X Bytes 32-47 X X X

Buffer 0 (128bits) X XXX X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) X XXX X Bytes 16-31
Data To ARM XXX X Bytes 03 X Bytes 4-7 X Bytes 8-11 X Bytes 12-15 X Bytes 16-19 XBytes 20-23 X Bytes 24-27 X Bytes 28-31

Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.

330 SAM4N8/SAM4AN16 [DATASHEET] /ltmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 19-3. Code Read Optimization for FWS =3

e 1 N A N N e N A A

@Byte 0 @4 @8 @12 @16 @20 @24 @28 @32 @36 @40 @44 @48 @52
Flash Access X Bytes 0-15 X Bytes 16-31 X Bytes 32-47 X Bytes 48-63
Buffer 0 (128bits) XXX X Bytes 0-15 X Bytes 32-47
Buffer 1 (128bits) XXX X Bytes 16-31

Data To ARM X XXX 4-7 X 8-11 X12-15 X16-19X20-23X 24-27X 28-31X32-35X 36-39X 40-43X 44-47X48-51

Note: When FWS is included between 1 and 3, in case of sequential reads, the first access takes (FWS+1) cycles, the other ones only
1 cycle.

19.4.2.3Code Loops Optimization
The Code Loops optimization is enabled when the CLOE bit of the EEFC_FMR register is set at 1.

When a backward jump is inserted in the code, the pipeline of the sequential optimization is broken, and it
becomes inefficient. In this case the loop code read optimization takes over from the sequential code read
optimization to avoid insertion of wait states. The loop code read optimization is enabled by default. If in Flash
Mode Register (EEFC_FMR), the bit CLOE is reset to 0 or the bit SCOD is set to 1, these buffers are disabled and
the loop code read is not optimized anymore.

When this feature is enabled, if inner loop body instructions L, to L,, lay from the 128-bit flash memory cell My, to
the memory cell M,;, after recognition of a first backward branch, the two first flash memory cells My, and My,
targeted by this branch are cached for fast access from the processor at the next loop iterations.

Afterwards, combining the sequential prefetch (described in Section 19.4.2.2 “Code Read Optimization”) through
the loop body with the fast read access to the loop entry cache, the whole loop can be iterated with no wait-state.

Figure 19-4 below illustrates the Code Loops optimization.

Figure 19-4. Code Loops Optimization

Backward address jump

Flash Memory |
128-bit words

I
I
I
I I
I I
I I
| MbO | Mb‘l MpO Mp1
I I I I I |
I I I I I |
I I T T S B T [o i f o o [la [0 |] |
s EEEEEEEEE T 1
I I
\ By B B, By . B By By B | LRy P P, Py I P, Ps Pg P, |
i >
2x128-bit loop entry 2x128-bit prefetch
cache buffer
Mpo Branch Cache 0 Ly Loop Entry instruction My Prefetch Buffer 0
My, Branch Cache 1 L, Loop End instruction My, Prefetch Buffer 1
/ItmeL SAM4N8/SAM4N16 [DATASHEET] 331
Atmel-11158B-ATARM-SAM4N8-SAMA4N16-Datasheet_23-Mar-15

19.4.2.4 Data Read Optimization

The organization of the Flash in 128 bits (or 64 bits) is associated with two 128-bit (or 64-bit) prefetch buffers and
one 128-bit (or 64-bit) data read buffer, thus providing maximum system performance. This buffer is added in order
to store the requested data plus all the data contained in the 128-bit (64-bit) aligned data. This speeds up
sequential data reads if, for example, FWS is equal to 1 (see Figure 19-5). The data read optimization is enabled
by default. If the bit SCOD in Flash Mode Register (EEFC_FMR) is set to 1, this buffer is disabled and the data
read is not optimized anymore.

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 19-5. Data Read Optimization for FWS =1

LSS S I Y Y Y e e s o O O
e 1 t t 1 1 t t t 1 1

@Byte 0 @4 @8 @12 @16 @20 @24 @28 @32 @ 36
Flash Access xxx X Bytes0-15 X X Byesie31 X X Bytes 32-47
Buffer (128bits) X XXX X Bytes 0-15 X Bytes 16-31

Data To ARM X XXX YovesosX 47 X 811 X 1215 X Xie-19X 20-23 X 24-27 X 2831 X X32:35

332 SAM4N8/SAM4AN16 [DATASHEET]

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15 A t I I IeL

19.4.3 Flash Commands

The Enhanced Embedded Flash Controller (EEFC) offers a set of commands such as programming the memory
Flash, locking and unlocking lock regions, consecutive programming and locking and full Flash erasing, etc.

Table 19-2. Set of Commands

Command Value Mnemonic
Get Flash Descriptor 0x00 GETD
Write page 0x01 WP
Write page and lock 0x02 WPL
Erase page and write page 0x03 EWP
Erase page and write page then lock 0x04 EWPL
Erase all 0x05 EA
Erase Pages 0x07 EPA
Set Lock Bit 0x08 SLB
Clear Lock Bit 0x09 CLB
Get Lock Bit O0x0A GLB
Set GPNVM Bit 0x0B SGPB
Clear GPNVM Bit 0x0C CGPB
Get GPNVM Bit 0x0D GGPB
Start Read Unique Identifier OxO0E STUI
Stop Read Unique Identifier OxOF SPUI
Get CALIB Bit 0x10 GCALB
Erase Sector 0x11 ES
Write User Signature 0x12 WuUS
Erase User Signature 0x13 EUS
Start Read User Signature 0x14 STUS
Stop Read User Signature 0x15 SPUS

In order to perform one of these commands, the Flash Command Register (EEFC_FCR) has to be written with the
correct command using the FCMD field. As soon as the EEFC_FCR register is written, the FRDY flag and the
FVALUE field in the EEFC_FRR register are automatically cleared. Once the current command is achieved, then
the FRDY flag is automatically set. If an interrupt has been enabled by setting the FRDY bit in EEFC_FMR, the
corresponding interrupt line of the NVIC is activated. (Note that this is true for all commands except for the STUI
Command. The FRDY flag is not set when the STUI command is achieved.)

All the commands are protected by the same keyword, which has to be written in the 8 highest bits of the
EEFC_FCR register.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect
on the whole memory plane, but the FCMDE flag is set in the EEFC_FSR register. This flag is automatically
cleared by a read access to the EEFC_FSR register.

When the current command writes or erases a page in a locked region, the command has no effect on the whole
memory plane, but the FLOCKE flag is set in the EEFC_FSR register. This flag is automatically cleared by a read
access to the EEFC_FSR register.

SAMANS/SAMAN16 [DATASHEET 333
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 19-6. Command State Chart

Read Status: MC_FSR

A

No

Check if FRDY flag Set

Write FCMD and PAGENB in Flash Command Register

y

Read Status: MC_FSR

A

No

Check if FRDY flag Set

Check if FLOCKE flag Set Locking region violation

Check if FCMDE flag Set Bad keyword violation

lNo

Command Successfull

334 SAM4N8/SAM4AN16 [DATASHEET] /Itmel

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

19.4.3.1 Getting Embedded Flash Descriptor

This command allows the system to learn about the Flash organization. The system can take full advantage of this
information. For instance, a device could be replaced by one with more Flash capacity, and so the software is able
to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in the EEFC_FCR register. The
first word of the descriptor can be read by the software application in the EEFC_FRR register as soon as the
FRDY flag in the EEFC_FSR register rises. The next reads of the EEFC_FRR register provide the following word
of the descriptor. If extra read operations to the EEFC_FRR register are done after the last word of the descriptor
has been returned, then the EEFC_FRR register value is 0 until the next valid command.

Table 19-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes.

FL_PLANE[0] 4 Number of bytes in the first plane.

FL_PLANE[FL_NB_PLANE-1] 4+ FL_NB_PLANE -1 Number of bytes in the last plane.
Number of lock bits. A bit is associated

FL_NB_LocK 4+ FL_NB_PLANE Dreven wite o erase operations i the
lock region.

FL_LOCK]O0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region.

SAMANS/SAMAN16 [DATASHEET 335
Atmel []

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

19.4.3.2 Write Commands
Several commands can be used to program the Flash.

Flash technology requires that an erase be done before programming. The full memory plane can be erased at the
same time, or several pages can be erased at the same time (refer to Figure 19-7, "Example of Partial Page
Programming", and the paragraph below the figure.). Also, a page erase can be automatically done before a page
write using EWP or EWPL commands.

After programming, the page (the whole lock region) can be locked to prevent miscellaneous write or erase
sequences. The lock bit can be automatically set after page programming using WPL or EWPL commands.

Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds to the page size.
The latch buffer wraps around within the internal memory area address space and is repeated as many times as
the number of pages within this address space.

Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
Write operations are performed in a number of wait states equal to the number of wait states for read operations.
Data are written to the latch buffer before the programming command is written to the Flash Command Register
EEFC_FCR. The sequence is as follows:

e Write the full page, at any page address, within the internal memory area address space.

e Programming starts as soon as the page number and the programming command are written to the Flash

Command Register. The FRDY bit in the Flash Programming Status Register (EEFC_FSR) is automatically
cleared.

e When programming is completed, the FRDY bit in the Flash Programming Status Register (EEFC_FSR)

rises. If an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the corresponding interrupt
line of the NVIC is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence:
e Command Error: a bad keyword has been written in the EEFC_FCR register.

e Lock Error: the page to be programmed belongs to a locked region. A command must be previously run to
unlock the corresponding region.

e Flash Error: at the end of the programming, the WriteVerify test of the Flash memory has failed.

By using the WP command, a page can be programmed in several steps if it has been erased before (see Figure
19-7 below). This mode is called Partial Programming.

The Partial Programming mode works only with 32-bit (or higher) boundaries. It cannot be used with boundaries
lower than 32 bits (8 or 16-bit for example). To write a single byte or a 16-bit halfword, the remaining byte of the 32-
bit word must be filled with OxFF, then the 32-bit word must be written to Flash buffer.

Note: If several 32-bit words need to be programmed, they must be written in ascending order to Flash buffer before
executing the write page command. If a write page command is executed after writing each single 32-bit word, the
write order of the word sequence does not matter.

After any power-on sequence, the Flash memory internal latch buffer is not initialized. Thus the latch buffer must

be initialized by writing the part-select to be programmed with user data and the remaining of the buffer must be

written with logical 1.

This action is not required for the next partial programming sequence because the latch buffer is automatically
cleared after programming the page.

336 SAM4N8/SAM4AN16 [DATASHEET)] AtmeL

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

Figure 19-7. Example of Partial Page Programming

32-bit wide

< »
< >

X words

X words

X words

X words

mm T
mm T
mm T
mm . T
b
mm T
T T
mm T

Step 1.
Erase All Flash
So Page Y erased

Atmel

32-hit wide

A
\ 4

Step 2.
Programming of the second part of Page Y

32-hit wide

A
\ 4

Step 3.
Programming of the third part of Page Y

SAM4N8/SAM4AN16 [DATASHEET] 337

Atmel-11158B-ATARM-SAM4N8-SAM4N16-Datasheet_23-Mar-15

19.4.3.3 Erase Commands
Erase commands are allowed only on unlocked regions. Depending on the Flash memory, seve