

5.5V, 2A Low R_{DSON} Load Switch With Programmable Current Limit

DESCRIPTION

The MP5073 provides up to 2A load protection over a 0.5V to 5.5V voltage range. With the small R_{DSON} in tiny package, MP5073 is a very high efficiency and space saving solution for notebooks, tablets, and other portable/battery-operated applications.

With the soft start function, the MP5073 can avoid inrush current during circuit start up. MP5073 also provides programmable soft start time, output discharge functions, OCP and thermal shutdown features.

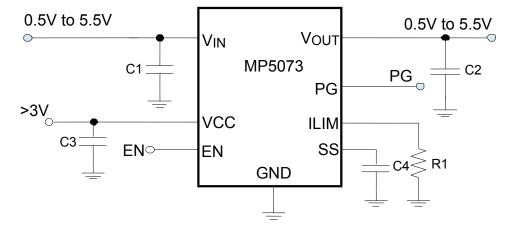
The max load at the output (source) is current limited. This is accomplished by utilizing a sense FET topology. The magnitude of the current limit is controlled by an external resistor from the ILIM pin to ground.

An internal charge pump drives the gate of the power device, allowing a very low on-resistance DMOS power FET of just $50m\Omega$.

The MP5073 is available in a tiny 12-pin 2mmx2mm QFN package.

FEATURES

- Integrated 50mΩ Low RDSON FETs
- Adjustable Start Up Slew Rate
- Wide VIN Range from 0.5V to 5.5V
- <1µA Shutdown Current
- Typical 2A Current Limit Range
- Power Good Indicator
- Output Discharge function
- Enable Pin
- <200ns Short-Circuit Protection Response Time
- Thermal Protection
- Small QFN-12 (2mmx2mm) Package for Space Saving


APPLICATIONS

- Notebook and Tablet Computers
- Portable Devices
- Solid State Drives
- Handheld Devices

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

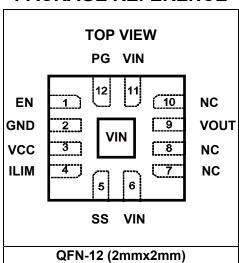
TYPICAL APPLICATION

ORDERING INFORMATION

Part Number*	Package	Top Marking
MP5073GG	QFN-12 (2mmx2mm)	See Blow

^{*} For Tape & Reel, add suffix -Z (e.g. MP5073GG-Z);

TOP MARKING


CBY

LLL

CB: product code of MP5073GG;

Y: year code; LLL: lot number;

PACKAGE REFERENCE

Thermal Resistance (4)	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$	
QFN-12 (2mmx2mm)	80	16	°C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J (MAX), the junction-to-ambient thermal resistance θ_{JA} , and the ambient temperature T_A . The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = $(T_J (MAX)-T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

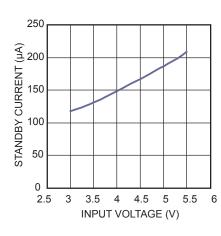
ELECTRICAL CHARACTERISTICS

 V_{IN} = 3.6V, V_{CC} = 3.6V, T_{A} = 25°C, unless otherwise noted.

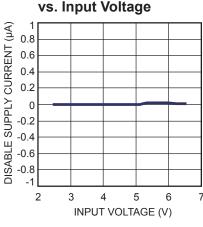
Power FET ON Resistance R_{DSON-7} $V_{CC}=5$ V_{C	/, EN=0 /, Enable, No load	0.1 180 50 60 150 30	5.5 5.5 1 1 230	V V μA μA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, EN=0 /, EN=0 /, Enable, No load	50 60	5.5 1 1	V μΑ μΑ
	, EN=0 /, EN=0 /, Enable, No load	50 60	1 1	μA μA mΩ
$\begin{array}{ c c c c }\hline \text{Off State Leakage Current} & I_{\text{OFF}} & V_{\text{IN}} = 5V\\ \hline V_{\text{CC}} & \text{Standby Current} & I_{\text{STBY}} & \frac{V_{\text{CC}} = 5V}{V_{\text{CC}} = 5V}\\ \hline \textbf{Power FET} & & & & V_{\text{CC}} = 5V\\ \hline \textbf{ON Resistance} & & R_{\text{DSON-7}} & \frac{V_{\text{CC}} = 5V}{V_{\text{CC}} = 3V}\\ \hline \textbf{Thermal Shutdown and Recovery} & & & & \\ \hline \textbf{Shutdown Temperature} & & & & \\ \hline \textbf{Shutdown Temperature} & & \\ \hline Shutdown Tempera$	/, EN=0 /, Enable, No load	50 60	1	μA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/, EN=0 /, Enable, No load	50 60	1	μA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y, Enable, No load	50 60		mΩ
	3V	50 60 150		
$ \begin{array}{ c c c c c } \hline \text{ON Resistance} & R_{\text{DSON-7}} & \frac{V_{\text{CC}} = 5.}{V_{\text{CC}} = 3.} \\ \hline \textbf{Thermal Shutdown and Recovery} \\ \hline \textbf{Shutdown Temperature} & T_{\text{STD}} & \\ \hline \textbf{Hysteresis} & T_{\text{HYS}} & \\ \hline \textbf{Under Voltage Protection} \\ \hline V_{\text{CC}} & \text{Under Voltage Lockout} & \\ \hline \textbf{Threshold} & V_{\text{CC}_UVLO} & \\ \hline \textbf{UVLO Hysteresis} & V_{\text{UVLOHYS}} \\ \hline \textbf{Soft Start} \\ \hline \textbf{SS pull-up current} & I_{\text{SS}} & \text{Fixed s} \\ \hline \textbf{Enable} & \\ \hline \textbf{EN Rising Threshold} & V_{\text{ENH}} & \\ \hline \textbf{EN Hysteresis} & V_{\text{ENL}} & \\ \hline \end{array} $	3V	150		
				°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dising Throughold			°C
	Dising Throughold	30		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dialog Thurschold			°C
	Diaine Thurshald			
	Rising Threshold	2.6	2.8	٧
		200		mV
Enable EN Rising Threshold V _{ENH} EN Hysteresis V _{ENL}	<u> </u>	•	•	
EN Rising Threshold V _{ENH} EN Hysteresis V _{ENL}	lew rate	11		μA
EN Hysteresis V _{ENL}	<u> </u>	•	•	
EN Hysteresis V _{ENL}	1.3	1.5	1.7	V
ILIM		200		mV
	<u> </u>	•	•	
=::::::	23.8kΩ.Ramp louτ peak current limit 1.3	1.4	1.5	А
Discharge Resistance				
Discharge Resistance R _{DIS}		200		Ω
PG				
Power Good Rising Threshold V_{PG_R} Voltage and V_{IN}	gap between V _{OUT} 140	280	450	mV
Power Good Hysteresis V _{PG_VHYS}		60		mV
Power Good Delay T _{PG_D}		50		μs
Power Good High V _{PG_H} V _{CC} =3.				V
Power Good Low V _{PG_L} Sink 1r	3.2		0.3	V

Notes:

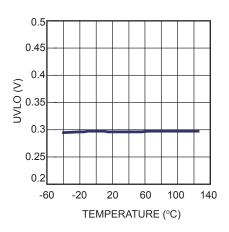
⁵⁾ Guarantee by Characterization-Not Production tested.

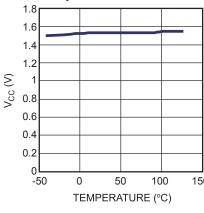

PIN FUNCTIONS

QFN12(2x2) Pin #	Name	Description
1	EN	Enable Input. Pulling this pin below the specified threshold shuts the chip down.
2	GND	Ground.
3	VCC	Supply Voltage to the Control Circuitry.
4	ILIM	Output Current Limit Configure. Place a resistor to ground to set the overload current limit level.
5	SS	Soft start pin. An external capacitor connected to this pin sets the slew rate of the output voltage soft start period.
6, 11, Exposed Pad	VIN	Input Power Supply.
9	VOUT	Output to the load.
12	PG	Power Good Pin. Push-Pull output.
7, 8, 10	NC	NC Pin, Suggest connecting them with VOUT to improve the thermal performance and be compatible with MP5087 and MP5077.

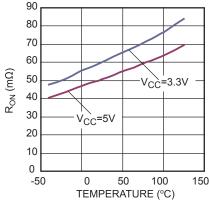

TYPICAL PERFORMANCE CHARACTERISTICS

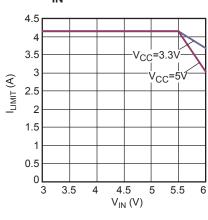
 V_{IN} = 3.6V, V_{CC} = 3.6V, EN = 2.5V, R_{LIMIT} = 13k, T_A = 25°C, unless otherwise noted.

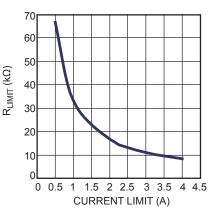

Quiescent Current

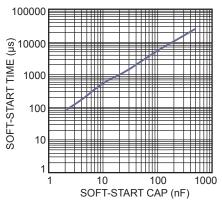

Disabled Supply Current vs. Input Voltage


UVLO vs. Temperature


EN Rising Threshold vs. Temperature


R_{DS_ON} vs. V_{CC}

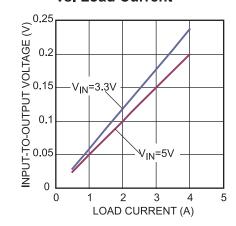

R_{DS ON} vs. Temperature


The Maximum Limit vs. V_{IN}

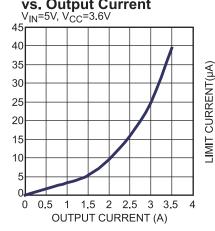
Current Limit vs. RLIMIT

Soft-Start vs. Cap

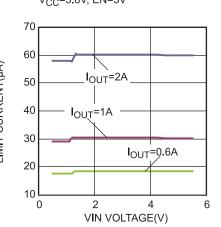
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

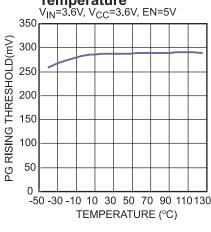

(O_O)

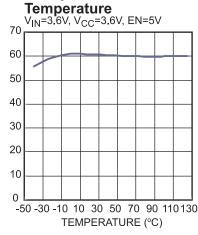
CASE TEMPERATURE RISE


PG HYSTERESIS(mV)

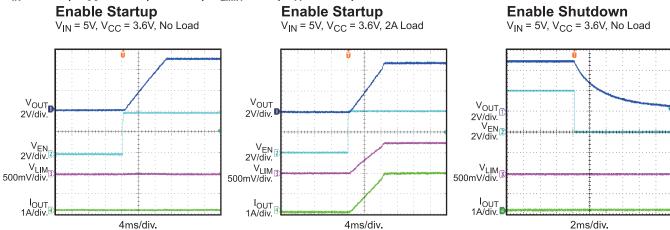
 V_{IN} = 3.6V, V_{CC} = 3.6V, EN=2.5V, R_{LIMIT} =13k, T_A = 25°C, unless otherwise noted.

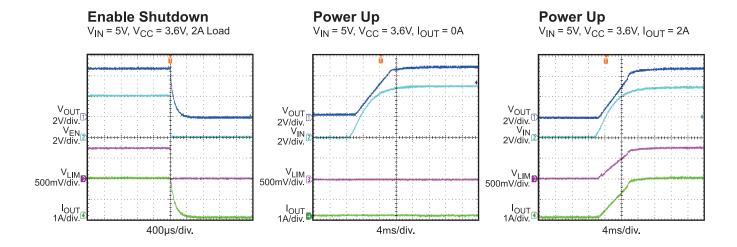

Input-to-Output Voltage vs. Load Current

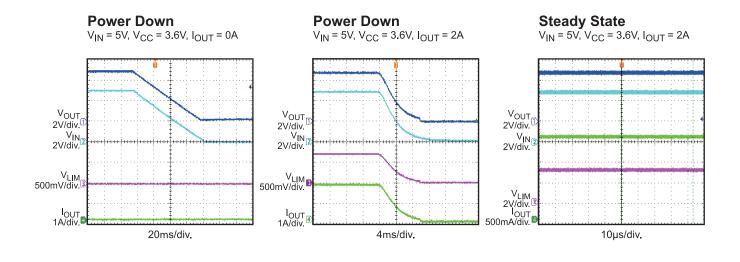

Case Temperature Rise vs. Output Current


LIMIT Current vs. VIN V_{CC}=3.6V, EN=5V

PG Rising Threshold vs. Temperature

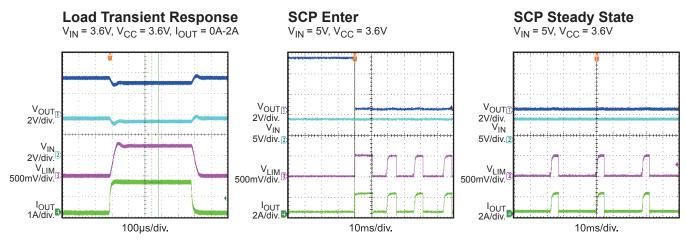

PG Hysteresis vs.

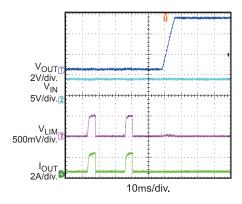


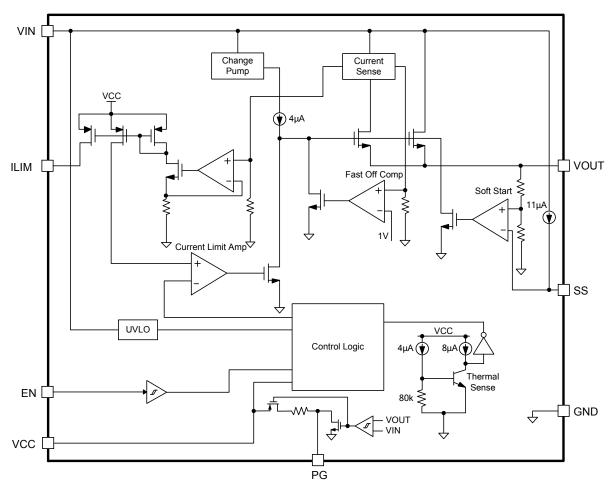


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 V_{IN} = 3.6V, V_{CC} = 3.6V, EN=4V, R_{LIMIT} =13k, T_A = 25°C, unless otherwise noted.




TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 V_{IN} = 5V, V_{CC} = 3.6V, EN=4V, R_{LIMIT} =13k, T_A = 25°C, unless otherwise noted.

 $V_{IN} = 5V, V_{CC} = 3.6V$

Figure 1: Functional Block Diagram

OPERATION

The MP5073 is designed to limit the in-rush current to the load when a circuit card is inserted into a live backplane power source, thereby limiting the backplane's voltage drop and the slew rate of the voltage to the load. It provides an integrated solution to monitor the input voltage, output voltage and output current to eliminate the need for an external current power MOSFET, and current switch device.

Enable

When input voltage is greater than the undervoltage lockout threshold (UVLO), typically 0.5V, MP5073 can be enabled by pulling EN pin to higher than 1.5V. Pulling down to ground will disable MP5073.

Current Limit

The MP5073 provides a constant current limit that can be programmed by an external resistor. Once the device reaches its current limit threshold, the internal circuit regulates the gate voltage to hold the current in the power FET constant. The typical response time is about 20µs and the output current may have a small overshoot during this time period.

The pre-set current limit value can be calculated by below equation:

$$I_{LIMIT} = (1 \div R_{LIMIT}) \times S$$
 (1)

S is the current sense ratio of MP5073, and this value is typically 33000 in V_{IN}=3.6V. The other values of S please refer the curves in typical performance characteristics.

If the current limit block starts to regulate the output current, the power loss on power MOSFET will cause the IC temperature rise. If the junction temperature rose to high enough, it will trigger thermal shutdown. After thermal shutdown happened, it will disable the output until the over temperature fault remove. The over temperature threshold is 150 $^{\circ}\text{C}$ and hysteresis is 30 $^{\circ}\text{C}$.

Power-Good Function

The PG pin is the push pull of a MOSFET that can be pulled high to Vcc. The MOSFET turns on with the application of an input voltage so that the PG pin is pulled to GND. After the

voltage gap between V_{IN} and V_{OUT} is smaller than 280mV, the PG pin is pulled high after a 50µs delay. When the voltage gap is higher than 340mV, the PG pin will be pulled low.

Short-Circuit Protection

If the load current increases rapidly due to a short circuit, the current may exceed the current limit threshold by a lot before the control loop can respond. If the current reaches an internal secondary current limit level (typical 7A), a fast turn-off circuit activates to turn off the power FET. This limits the peak current through the switch to limit the input voltage drop. The total short circuit response time is about 200ns. If fast off works, it will keep off the power FET for 80µs. After that time period, it will re-turn on power FET, if the part is still in short-circuit condition. MP5073 will reduce the current limit, and hold it until the part is so hot and thermal shutdown. After the short-circuit condition removed, the current limit will recover to the pre-set value automatically.

Output Discharge

MP5073 has output discharge function. This function can discharge the V_{OUT} by internal pull down resistance when IC disabled and the load is very light.

Soft-Start

A capacitor connected to the SS pin determines the soft-start time. There is an internal $11\mu A$ constant current source charge SS cap and ramps up the voltage on the SS pin. The output voltage rises at 5 times the slew rate to SS voltage.

The soft-start time can be calculated by below equation:

$$T_{SS}(ms) = \frac{1}{5} \times \frac{V_{OUT}(V) \cdot C_{SS}(nF)}{I_{SS}(\mu A)} \quad (2)$$

 T_{SS} is the soft-start time, I_{SS} is internal 11µA constant current, C_{SS} is external soft-start cap.

The suggestion minimum SS cap should be bigger than 4.7nF. If the SS pin is floated or SS cap is too small, the V_{OUT} rising time will be just limited by power MOS charge time.

APPLICATION INFORMATION

ILIM Resistor Selection

The current limit value can be set by ILIM resistor. The current limit can be gotten by equation (1).

The current limit threshold is suggested to 10% ~ 20% higher than maximum load current. For example, if the system's full load is 2A, set the current limit to 2.2A.

Soft Start Capacitor Selection

There is an internal 11µA constant current source charge SS cap and ramps up the voltage on the SS pin. The output voltage rises follow the 5 times the slew rate of SS voltage.

If the inrush on output current reached the current limit during start up (like with large output cap or very large load), MP5073 will limit the output current and the same time, SS time will be increased (Figure 2 and Figure 3).

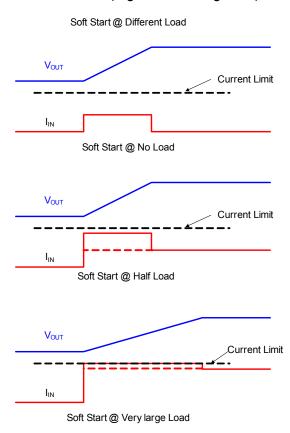


Figure 2: Soft Start Periods at Different Load

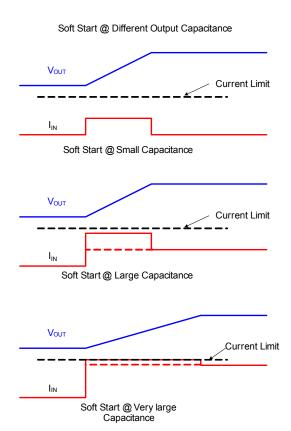


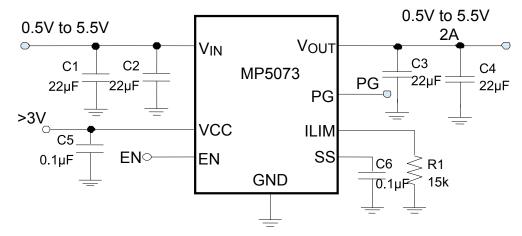
Figure 3: Soft Start Periods at Different Output Capacitance

DESIGN EXAMPLE

Some design example and are provided below

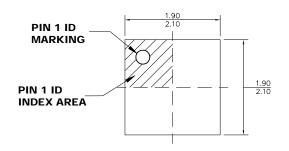
Table 1

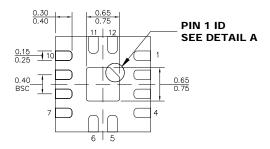
V _{IN} (V)	Current limit (A)	Rlimit (kΩ)	SS cap (nF)	SS time (ms)
3.6	0.5	47	22	1
3.6	1	27.4	47	2.4
3.6	2	15	100	5.4


Layout Guide

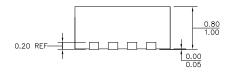
PCB layout is very important to achieve stable operation. Please follow these guidelines and take below figure for reference. Place R_{limit} close to ILIM pin, input cap close to V_{CC} pin. Put enough vias around IC to achieve better thermal performance.

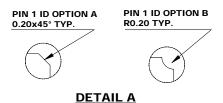
Figure 4: Recommended Layout

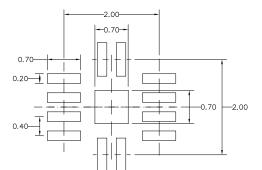

TYPICAL APPLICATION CIRCUITS



PACKAGE INFORMATION


QFN-12 (2mmX2mm)




TOP VIEW

BOTTOM VIEW

SIDE VIEW

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETERS MAX.
- 4) JEDEC REFERENCE IS MO-229.
- 5) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.